Programming the SimaPro
COM Interface

—

SimaPro

Title: Programming the SimaPro COM interface
Written by: PRé Sustainability
Version: 1.6
Date: November 2024

Copyright: © 2024 PRé Sustainability B.V. All rights reserved.

PRé grants the right to distribute and print the unchanged PDF
version of this manual for non-commercial purposes only.

Parts of the manual may be reproduced in other work only after
permission and if a clear reference is made that PRé is the author.

About SimaPro

SimaPro was developed by PRé with the goal of making sustainability a fact-
based endeavor. PRé has been a leading voice in sustainability metrics and life P R 4
cycle thinking development for nearly 30 years, pioneering the field of e

environmental and social impact assessment. We develop tools that help you

. . Fact-based sustainability
create value and drive sustainable change.

SimaPro is distributed through a Global Partner Network. All partners were carefully selected by PRé. A
partner in your country will act as your local SimaPro sales and support representative and can show you
a personal demo or provide more information.

Find your local partner: simapro.com/global-partner-network

Get in touch

T +31334504010
E support@simapro.com
W simapro.com | support.simapro.com | pre-sustainability.com

https://simapro.com/global-partner-network/
mailto:support@pre-sustainability.com
http://www.simapro.com/
http://www.pre-sustainability.com/

Programming the SimaPro COM Interface

Table of Contents

| SN VoY (o6 1§ 1 u (o) s KBS PR 2
2 Supported environments and operating SYyStemsceeeeeeeeeeeeeereeeeennnnnn. 2
RN 4 0V <o 10 | TSR PRURRRRURRRN 3
4 TechniCal SAMPIES......ceieeeeeieee et eeerteee e eeretceeeeeeeeeeeeeeereanneeeeesssnneeeeenes 3
4.1 VBA (Excel / Word) 3
4.2 Delphi 4
43 PHP 5
4.4 C++ 6
4.5 VB.NET Sample 6
4.6 C# Samples 8
I) <) =) (] SRR PR 11
5.1 Core functions/properties 11
5.2 License functions & properties 49
5.3 Enumerated types 54
(Y010} 01 = Tod ol 6 LSRR 58

Programming the SimaPro COM Interface

1 Introduction

SimaPro Craft is a versatile LCA tool, but in some occasions you need more than a stand-alone tool. For
example, if you want to analyze a lot of data automatically you may want to integrate SimaPro and your
business software.

In the SimaPro Developer version a COM-interface is available. This allows the user to link SimaPro to
other tools in order to automate processes, saving you time and making your work more efficient.
Please note that you need to program your own interface.

Most functions and properties are only available if you have a valid SimaPro Developer license. Some
functions, i.e. those that check and handle licenses, are available without any Simapro license.

Through the COM interface, you can do the following actions:
e Run server functions (for instance you can check if your license is valid or how many libraries
exist in a database)
e Open or close SimaPro databases and projects
e Read, create, edit, delete datasets, parameters
e Read, create, edit substances
e Run calculations per reference default unit (for instance 1 kg, 1 tkm, 1 MJ, etc)

However, please note that some functions or fields are not accessible via the COM interface. These are:
e The documentation fields for processes
e Specific calculation switches, for instance, you cannot choose to exclude long-term emissions
e Library switch
e Uncertainty analysis
e Comparing multiple datasets

2 Supported environments and operating
systems

All software that can use COM interface are supported, for example:

e Excel, Word (VBA)

e Delphi

e (C++

e Visual Basic
e PHP

e Visual studio (C#, VB.NET)

Using SimaPro and the COM interface to support a web server requires more on the user rights level. Most
easy to use is .NET, but ASP is also possible. COM is typical for Windows so it is only available on Windows
Systems.

Programming the SimaPro COM Interface

3 Architecture

Every caller has its own workspace within SimaPro. This workspace contains the opened database,
project and calculation results of the last calculation. See the diagram below that represents the
workflow.

SimaPro

Reguest Reguest

COM
ler - Interface -

Results Results

Workspace
Database

Workspace

Figure 3.1 COM interface workflow

4 Technical samples

Below you find some simple examples. Note for all samples: adapt the server name, alias, database and
project and process names to your own situation. If you use the COM interface with a single user version
then adapt the connection properties according to the following guidelines:

e Serveris not empty but “local server”

e Aliasis the directory where your database files reside

e Login details are ignored, i.e. User name and password

e The path to use for Alias and the name to use for Database can be found by opening the
SimaPro application and selecting the menu option File->Open SimaPro Database

e Thelist of available projects can be found by opening the SimaPro application and selecting the
menu option File > Open Project

4.1 VBA (Excel / Word)

This example creates a substance and 2 processes including parameters. One process gets input
from the other. Be sure to include “Simapro Library " to your VBA-references.

Sub CreateProcess ()
Dim SP As SimaProServer
Dim PC As Process
Dim PC2 As Process
Dim PL As ProcessLine
Dim Param As ParamLine
Dim Subs As Substance

Set SP = New SimaProServer
SP.Server = "nexusdb@192.168.1.220"
SP.Alias = "Default"

mailto:nexusdb@192.168.1.220

SP.

SP

SP.

SP

SP.

Su
Su
Su

Database = "Professional"
.OpenDatabase
Login "Manager", ""

.OpenProject "Introduction to SimaPro 8",

CreateSubstance "Air", Subs
bs.CASNumber = "4-5-13"
bs.Name = "Some substance"
bs.DefaultUnit = "kg"

Subs.Update

SP
Se

PL.
PL.
PL.
PL.
PL.

PC.

SP
Se
PL
PL
PL

Se
Pa
Pa

Se
L}

PL
PL
PL

Se

.CreateProcess ptMaterial, PC
t PL = PC.AddLine (ppProduct, -1)
ObjectName = "Steel 2"

UnitName = "kg"

Amount = "2"

Comment.Add ("My new created process")
CategoryPath = "Chemicals\inorganic"
Update

create second material process Case

wn

.CreateProcess ptMaterial, PC2

t PL = PC2.AddLine (ppProducts, 0)
.ObjectName = "Case 2"

.UnitName = "kg"

.Amount = "10"

t Param = PC2.AddParamLine (ptInputParameter,
ram.Name = "A"

ram.Value = "2,3"

add input from Steel

t PL = PC2.AddLine (ppMaterialsFuels, -1)
input from steel

.SetProduct "Introduction to SimaPro 7",
.Amount = "8"

.UnitName = "kg"

t PL = PC2.AddLine (ppAirborneEmissions,
input from steel

PL.SetSubstance "Some substance", ""
PL.Amount = "A+1"

PL.UnitName = "kg"

PC2.Update

SP.Logout

SP.CloseDatabase

Se

End Su

4.2

t SP = Nothing

b

Delphi

4.2.1 Calculate a single score

This example calculates the single score of a process, using the Eco-indicator 99 H/A method and returns

the result.

var
SimaPro: SimaProServer;

begin
SimaPro := CoSimaProServer.Create;
SimaPro.Server := 'nexusdb@192.168.1.220"';
SimaPro.Alias := 'Default';
SimaPro.Database := 'Professional';

SimaPro.OpenDatabase;

ptMaterial,

-1)

Programming the SimaPro COM Interface

"Steel 2"

mailto:%27nexusdb@192.168.1.220

Programming the SimaPro COM Interface

SimaPro.Login ('Manager', '');
SimaPro.OpenProject ('Introduction to SimaPro 7', '');
if SimaPro.Analyse ('BUWAL250', ptMaterial, Electricity Netherlands B250 ',
'Methods', 'Eco-indicator 99 (H)', 'Europe EI 99 H/A') then
begin
memol.lines.add('single score = ');
memol.lines.add (FloatToStr (SimaPro.AnalyseResult (rtSingleScore, 0) .Amount));
end;

4.2.2Create a process

This example creates a process with an input of plastic.

var
SimaPro: SimaProServer;
PC2: Process;
PL: ProcessLine;

begin
SimaPro := CoSimaProServer.Create;
SimaPro.Server := 'nexusdb@192.168.1.220';
SimaPro.Alias := 'Default';
SimaPro.Database := 'Professional';

SimaPro.OpenDatabase;
SimaPro.Login ('Manager', '');
SimaPro.OpenProject ('Introduction to SimaPro 7', '');
SimaPro.CreateProcess (ptMaterial, PC2);
PL := PC2.AddLine (ppProducts, 0);

PL.ObjectName 'Case 2';

PL.UnitName := 'kg';

PL.Amount := '10';

PL := PC2.AddLine (ppMaterialsFuels, -1);
PL.SetProduct ('BUWAL250', ptMaterial, 'PVC B250');
PL.Amount := '8';

PL.UnitName := 'kg';

PC2.Update;
memol.lines.add('ready');

4.3 PHP

This example, for PHP in console mode, prints an overview of all processes and product stages in a
project to the console.

<?php
$SP = new COM("SimaPro.SimaProServer");
$SP->Server = 'nexusdb@192.168.1.111"';
$SP->Alias = 'Default';
$SP->Database = 'Professional';
$SP->OpenDatabase;
$SP->Login ('Manager', '');

$SP->OpenProject ('Introduction to SimaPro 7', '');

print $SP->ProductCount + "\n";

for ($I = 1; S$I < $SP->ProductCount; $I = SI + 1) {
print $SP->ProductName ($I) . "\n";

}

$sp = null;

?>

mailto:%27nexusdb@192.168.1.220
mailto:%27nexusdb@192.168.1.111

Programming the SimaPro COM Interface

4.4 C++

The C++is more complex due to the memory allocation requirements. Precondition is a form with a
memo called memo1. Otherwise replace the “Memo1->Lines-Add" part with more suitable code. This

example below calculates the single score of a process, using the Eco-indicator 99 H/A method and
returns the result.

BSTR Server

::8ysAllocString (L"nexusdb@192.168.1.220");

BSTR Alias = ::SysAllocString(L"Default");

BSTR Database = ::SysAllocString(L"Professional");

BSTR User = ::SysAllocString(L"Manager");

BSTR Project = ::SysAllocString(L"Introduction to SimaPro 7");
BSTR ProcessProject = ::SysAllocString (L"BUWAL250");

BSTR Process = ::SysAllocString(L"PVC B250");

BSTR MethodLib = ::SysAllocString(L"Methods");

BSTR Method = ::SysAllocString(L"Eco-indicator 99 (H)");

BSTR NWSet = ::SysAllocString(L"Europe EI 99 H/A");

TCOMISimaProServer SimaPro = CoSimaProServer::Create();

SimaPro->Server = Server;

SimaPro->Alias = Alias;

SimaPro->Database = Database;

SimaPro->OpenDatabase () ;

SimaPro->Login (User, L"");

SimaPro->OpenProject (Project, L"");

if (SimaPro->Analyse (ProcessProject, ptMaterial, Process,
MethodLib, Method, NWSet))

{
Memol->Lines->Add ("Single score = ");
Memol->Lines->Add (FloatToStr (SimaPro->AnalyseResult (rtSingleScore, 0)->Amount));

::SysFreeString
::SysFreeString
::SysFreeString
::SysFreeString
::SysFreeString
::SysFreeString
::SysFreeString
::SysFreeString
::SysFreeString
::SysFreeString

Server) ;

Alias);
Database) ;
User) ;

Project);
ProcessProject) ;
Process) ;
MethodLib) ;
Method) ;

NWSet) ;

4.5 VB.NET Sample

This example will create webpage with a list of all processes in a database and create a new process with a

given name. Create a website or aspx page in Visual Studio with:

1 Label

2 Buttons
1 Textbox
1 GridView

And use the following code:
using System;

using System.Data;

using System.Collections;
using System.Configuration;
using System.Web;

using System.Web.Security;
using System.Web.UI;

using SimaPro;

mailto:nexusdb@192.168.1.220

using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class Default

{

System.Web.UI.Page

protected void Page Load(object sender, EventArgs e)

{

}

protected void Buttonl Click(object sender, EventArgs e)

{

}

SimaProServer SP = new SimaPro.SimaProServer();
SimaPro.Process PC;

SP.Server = "nexusdb@192.168.1.220";

SP.Alias = "Default";

SP.Database = "Professional";

SP.OpenDatabase () ;

SP.Login ("Manager", "");

SP.OpenProject ("Introduction to SimaPro 7", "");
SP.CreateProcess (TProcessType.ptMaterial, out PC);
ProcessLine PL = PC.AddLine (TProcessPart.ppProducts,
PL.ObjectName = TextBoxl.Text;

PL.UnitName = "kg";

PL.Amount = "2";

PL.Comment.Add ("My new created process");
PC.Update () ;

SP.Logout () ;

SP.CloseDatabase () ;

Labell.Text = TextBoxl.Text + " is created";

protected void Button2 Click(object sender, EventArgs e)

{

ArrayList AL = new ArrayList();

SimaProServer SP = new SimaPro.SimaProServer () ;
SimaPro.Process PC;

SP.Server = "nexusdb@192.168.1.220";

SP.Alias = "Default";

SP.Database = "Professional";
SP.OpenDatabase () ;
SP.Login ("Manager",
SP.OpenProject ("Introduction to SimaPro 7",
for(int I = 0; I < SP.ProductCount; I++)

{

"y

nny

AL.Add (SP.get ProductName (I));
bi
GridvViewl.DataSource = AL;
GridvViewl.DataBind () ;
SP.Logout () ;
SP.CloseDatabase () ;

Labell.Text = TextBoxl.Text + " list done";

-1);

Programming the SimaPro COM Interface

mailto:nexusdb@192.168.1.220
mailto:nexusdb@192.168.1.220

Programming the SimaPro COM Interface

4.6 C# Samples

4.6.1 Calculation example

In Visual Studio, this example creates a console application. You need to reference the SimaPro Library.
Go to the Solution Explorer and add Reference. Choose the COM tab and select ‘SimaPro Library’
(Version 2.0).

. D

ndowsFormsApplicationl
- #--_[=dl Propertie

IS - |

----- <0 StdvCL

----- «J System

..... < System.Core

----- <3J System.Data

----- < System.Data.DataSetExtensions
..... «J System.Deployment

..... «J System,Drawing

..... < System.Windows.Forms

Paste these code snippets into the Main method. Change the server name, alias and database to your
own situation. If opening the database in single user mode, be sure to use double \V' in the alias,
otherwise it will be handled as an escape character.

using System;
using SimaPro;

namespace ConsoleApplication
{
class Program
{
static void Main(string[] args)
{
// Declare objects and strings to identify them
SimaProServer SP;
Process PCassembly;
Process PCmaterial;
ProcessLine PLassemblyName;
ProcessLine PLassemblyMaterial;
ProcessLine PLmaterialProperties;

string assembly = "New Assembly";
string material = "Steel";
string project = "Introduction to SimaPro 7";

Console.Writeline ("Started app");

// Open database and project
SP = new SimaProServer();

SP.Server = "local server"; // "nexusdb@192.168.1.113" if multi user
SP.Alias = "C:\\Users\\Public\\Documents\\SimaPro\\database" // "Default" if multi user
SP.Database = "Professional";

SP.OpenDatabase () ;

SP.Login ("Manager", ""); // values ignored for single user
SP.OpenProject (project, "");

Console.WriteLine ("Opened database and project");

mailto:nexusdb@192.168.1.113

Programming the SimaPro COM Interface

// Test if assembly already exists
if (SP.FindProcess (project, TProcessType.ptAssembly, assembly, out PCassembly))
{

Console.WriteLine ("Assembly already exists");

PCassembly.Delete () ;
Console.WriteLine ("Assembly deleted");
}

// Test if material already exists
if (!SP.FindProcess (project, TProcessType.ptMaterial, material, out PCmaterial))
{
// Create material
SP.CreateProcess (TProcessType.ptMaterial, out PCmaterial);
Console.WriteLine ("Created material process");

PLmaterialProperties = PCmaterial.AddLine (TProcessPart.ppProducts, -1);
PLmaterialProperties.ObjectName = material;
PLmaterialProperties.UnitName = "kg";
PLmaterialProperties.Amount = "2";
PLmaterialProperties.Comment.Add ("My newly created process");
PCmaterial.Update () ;
Console.Writeline ("New material process committed");

}

else

{
Console.WriteLine ("Material " + material + " already exists");

}

// Create new process object of type Assembly
SP.CreateProcess (TProcessType.ptAssembly, out PCassembly);
Console.WritelLine ("Created process");

// Get process line of type ‘Product’ from the new Assembly object.
// For product-stage processes, this line is created automatically.
// This line is needed to set the name, comments and category path.
PLassemblyName = PCassembly.get Line(TProcessPart.ppProducts, 0);

// Set properties of process line
PLassemblyName.ObjectName = assembly;
PLassemblyName.Comment .Add ("My newly created assembly");
PLassemblyName.CategoryPath = "COM demonstration\\C# test";
Console.WritelLine ("Created assembly");

// add material to assembly

PLassemblyMaterial = PCassembly.AddLine (TProcessPart.ppAssembliesAndMaterials, -1);
PLassemblyMaterial.SetProduct (project, TProcessType.ptMaterial, material);
PLassemblyMaterial.Amount = "2";

PLassemblyMaterial.UnitName = "kg";

Console.WritelLine ("New material line added to assembly");

PCassembly.Update () ;
Console.WriteLine ("New assembly committed") ;

// Logout and close database
SP.Logout () ;
SP.CloseDatabase () ;

SP = null;

Console.WritelLine ("Press <Enter> to continue...");
Console.ReadLine () ;

This code creates a new assembly and material processes and attaches them in the project. If the
assembly already exists, it is deleted and then recreated.

Programming the SimaPro COM Interface

4.6.2 Activation Methods

With the COM interface you can take care of registration and activation of your SimaPro license. See the
reference to find out which methods and properties exist on the SimaPro server object. Below you find
a routine that tries to register and automatically activate a license.

/// <summary>
/// Handles the Click event of the ButtonRegister control.
/// Will check if current installation is not registered. If so, will
/// register a license.
/// </summary>
/// <param name="sender">The source of the event.</param>
/// <param name="e">The <see cref="System.Windows.RoutedEventArgs"/> instance containing
/// the event data.</param>
private void ButtonRegister Click(object sender, EventArgs e)
{
var SPl = new SimaProServer();
var registered = false;
switch (SPl.LicenseStatus (TSoftwareProduct.spSimaPro))
{
case TLicenseStatus.lsActivatedWithService:
case TLicenseStatus.lsActivatedNoService:
textBoxl.Text += "Error: RegisterLicense called while already activated!:\r\n";
break;
case TLicenseStatus.lsRegistered:
textBoxl.Text += "Error: RegisterLicense called while already registered!:\r\n";
break;

case TLicenseStatus.lsNoLicense:

try
{
var LicenseCode = "ChoAAFiDGeCpOIESAAAA#" + "\r\n" +
"rQWXIXBVhOB3gqJI3BA3AwIIMUZQEP7ZDE13M64rHKuby5CATre" + "\r\n" +
"O+++guSjO0idrqh0gSk4hePsgXY3eOm5921z1ijg5AHIpEWRVYao" + "\r\n" +
"w4QPvjHGR3kk7aAqagqamXplQj9zws3loeZKnxI1lDaMJZ60keOb" + "\r\n" +
"VD/gqwaHBiVWN6mHkTHEWQ="";
var RegistrationName = "Mickey Mouse";
registered = (SPl.RegisterLicense (LicenseCode, RegistrationName) ==
TLicenseStatus.lsRegistered);
textBoxl.Text += "DoRegister returned: " + registered;
}
catch (Exception u)
{
textBoxl.Text += "RegisterLicense error: " + u.Message + "\r\n";
return;
}
}
break;

10

Programming the SimaPro COM Interface

/// <summary>

/// Handles the Click event of the ButtonActivateAuto control.

/// Will check if current installation is not activated. If so, will

/// activate current license.

/// </summary>

/// <param name="sender">The source of the event.</param>

/// <param name="e">The <see cref="System.Windows.RoutedEventArgs"/> instance containing
/// the event data.</param>

private void ButtonActivateAuto Click(object sender, EventArgs e)

{

var SPl = new SimaProServer();
var activated = false;
switch (SPl.LicenseStatus (TSoftwareProduct.spSimaPro))

{

case TLicenseStatus.lsActivatedNoService:
case TLicenseStatus.lsActivatedWithService:
textBoxl.Text = "Activation error: " + " already Activated" + "\r\n";

break;
case TLicenseStatus.lsRegistered:

{
try
{

activated = (SPl.ActivateAuto() == TLicenseStatus.lsActivated); textBoxl.Text =
"Activation: " + activated;

}

catch (Exception u)

{

textBoxl.Text = "Activation error: " + u.Message + "\r\n";

}

break;

-~

5 Reference

5.1 Core functions/properties

These functions and properties return an error if you do not have an active SimaPro Developer license
with COM option.

5.1.1 Amount Property

Object Method description

ProcessLine Amount or percentage of product or substance
SimaProAnalyseResult Amount of units substance or impact assessment score
SimaProNetworkResult Amount of the product

SimaProTreeResult Amount of the product

5.1.2 Cancel Method

Object Method description

Process Cancel edit mode and returns to read mode

Substance Cancel edit mode and returns to read mode
11

Programming the SimaPro COM Interface

5.1.3 Comment Property

ParamLine Comment of the parameter
Process Comment of the process
ProcessLine Comment

Substance Comment

5.1.4 Distribution Property

Object Property description
ParamLine Distribution of the input parameter
ProcessLine Distribution of amount

5.1.5 Edit Method

Object Method description
Process Set the object in edit mode
Substance Set the object in edit mode

5.1.6 LineNumber Property

ParamLine Index in the section of the process to which the ProcessLine
object belongs ProcessLine
ParamLine Index in the section of the process to which the ProcessLine

object belongs ProcessLine

5.1.7 MainCompartmentName Property

Object Property description
SimaProAnalyseResult
SimaProServer Name of a main-compartment

5.1.8 Maximum Property

Object Property description
ParamLine Maximum value of the input parameter
ProcessLine Maximum value of amount

12

Programming the SimaPro COM Interface

5.1.9 Minimum Property

Object Property description

ParamLine Minium value of the input parameter
ProcessLine Minimum value of amount

5.1.10 Mode Property

Object Property description

Process Mode of the object, can be: Read, New or Edit
Substance Mode of the object, can be: Read, New or Edit

5.1.11 Name Property

Object Property description

ParamLine Name of the parameter
Substance Name of the substance (e.g. 'Carbon dioxide')

5.1.12 ParamlLine

Class ParamLine
Represents one parameter in SimaPro

ParamLine.Comment Property Comment As IStrings
Comment of the parameter

Example
Add comment to a parameter

ParamLinel.Comment.add ('estimated value')

ParamLine.Distribution

Property Distribution As TDistribution
Distribution of the input parameter

Example
Set the distribtion to normal
Paraml.Distribution := distNormal

ParamLine.Expression

Property Expression As String

Expression of the calculated parameter
Member of ParamLine

13

Example
BisA+1

Paraml.Name = 'B'
paraml.ParameterType = ptCalculatedParameter

Paraml.Expression = 'A+1l'

ParamLine.Hide

Property Hide As Boolean
Only locally visible in process

ParamLine.LineNumber
Property LineNumber As

Integer

Programming the SimaPro COM Interface

Index in the section of the process to which the ProcessLine object belongs

Member of ParamLine
Read-Only

ParamLine.Maximum

Property Maximum As Double

Maximum value of the input parameter
Member of ParamLine

ParamLine.Minimum

Property Minimum As Double

Minium value of the input parameter
Member of ParamLine

ParamLine.Name
Property Name As String

Name of the parameter
Member of ParamLine

Example
BisA+1

Paraml.Name = 'B'
paraml.ParameterType = ptCalculatedParameter

Paraml.Expression = 'A+l'

ParamLine.ParameterType

Property ParameterType As TParameterType

Section in the process to which the ProcessLine object
belongs Read-Only

Example
BisA+1

14

Paraml.Name = 'B'
paraml.ParameterType = ptCalculatedParameter
Paraml.Expression = 'A+l'

ParamLine.Process

Property Process As Process

Process to which the ParamLine object belongs Read-Only
Can be used to trace the process properties.

ParamLine.StandardDeviation

Property StandardDeviation As Double
Standard deviation of the input parameter

ParamLine.Value

Property Value As Double

Value of the input parameter
Member of ParamLine

Example

SetAto 13

if Process.FindParameter ('a', Param) then
Param.Edit

else
Param = Process.AddParamLine (ptInputParameter, -1)

Param.Name = 'a'
Param.Value = 13

Param.Update

5.1.13 Process

Class Process

Programming the SimaPro COM Interface

Objects comprising inputs and outputs that model the environmental impact of real world activities.

Process.AddLine

Function AddLine(ByVal Part As TProcessPart, ByVal LineNumber As Integer) As

ProcessLine Add a line and returns a ProcessLine object
Member of Process

Parameters Description

Part Part within process (ppProducts, ppMaterialsFuels etc)
LineNumber Linenumber (zero based) -1 means: at the end

Return value
Returns ProcessLine

Example
Add emission and product to a process

15

Line := MyProcess.AddLine (ppEmissionsWater, -1);
Line.SetSubstance ('Carbon dioxide', 'Air');
Line.Amount := '34';

Line.UnitName := 'g';

Line := MyProcess.AddLine (ppProduct, -1);

Line.ObjectName :='My product name',
Line.Amount := '1l';

Line.UnitName := 'kg';
Line.WasteType := 'Steel';

See also the example at SimaProServer.CreateProcess

Process.AddParamLine

Programming the SimaPro COM Interface

Function AddParamLine(ByVal ParameterType As TParameterType, ByVal LineNumber As Integer)

As ParamLine Add a line and returns a ParamLine object

Member of Process

Parameters Description

ParameterType Type
LineNumber

Return value
Returns ParamLine

Example
SetAto 13

if NOT Process.FindParameter('a', Param) then

begin
Param = Process.AddParamlLine (ptInputParameter,
Param.Name = 'a'

end;

Param.Value = 13

Process.Cancel

Sub Cancel()
Cancel edit mode and returns to read mode

Example
Undo all edits

ProcessLine := Process.AddLine (ppProcesses, -1);
Process.cancel;

Process.Comment

Property Comment As IStrings
Comment of the process

Example
Set the comment

LineNumber, -1 adds at end

16

Programming the SimaPro COM Interface

process.comment.add ('changed by Joe');

Process.Delete
Sub Delete()

Remove a process from the database. An exception error is raised if process has already been deleted or
it is being used as a sub-process.

Example
PC.Delete

Process.DeletelLine

Sub DeleteLine(ByVal Part As TProcessPart, ByVal LineNumber As
Integer) Delete a line

Parameters Description

Part Which part of the process
LineNumber Which line within part (Zero based)
Example

Delete first product
Process.DeleteLine(ppProducts, 0)

Process.DeleteParamLine

Sub DeleteParamLine(ByVal ParameterType As TParameterType, ByVal
LineNumber As Integer) Delete a parameter line

Parameters Description

ParameterType Type of parameter
LineNumber Linenumber (zero based)
Example

Delete second calculated parameter
Pc.deleteParamLine(ptCalculatedParame
ter, 1)

Process.Edit

Sub Edit()
Set the object in edit mode

Example
Change the waste type of 'Steel NL' to 'Steel'

If SimaPro.FindProcess ('Sample project', ptMaterial, 'steel', pc) then

pc.Edit;

try
// change waste type of first product
pc.processline[ppProduct, 0] .WasteType := 'Steel';
pc.Update;

except

pc.Cancel;

17

Programming the SimaPro COM Interface

end;

Process.FindParameter

Function FindParameter(ByVal Name As String, ByRef ParamLine As ParamLine) As Boolean
Find a line and returns a ParamLine object

Parameters Description

Name Name of Parameter
ParamLine Result

Return value
Returns Boolean

Example

SetAto 13

if Process.FindParameter ('a', Param) then
Param.Edit

else
Param = Process.AddParamlLine (ptInputParameter, -1)

Param.Name = 'a'
Param.Value = 13

Param.Update

Process.Line

Property Line(ByVal Part As TProcessPart, ByVal LineNumber As Integer) As
ProcessLine Returns a ProcessLine object

Read-Only
Parameters Description
Part Part within process (ppProducts, ppMaterialsFuels etc)
LineNumber Linenumber (zero based)

Example

Delete the emissions to air of Carbon Dioxde.

Pc := SimaPro.FindProcess (ptMaterial, 'steel');
Pc.Edit;
I :=0;
while I < PC.LineCount[ppEmissionsAir] do
begin
if Pc.Line[ppEmissionsAir, I].ObjectName2 = 'Carbon Dioxide, biogenic' then
Pc.Deleteline (ppEmissionsAir, I)
else
Inc(I);
end;

Pc.Update;
Process.LineCount

Property LineCount(ByVal Part As TProcessPart) As

Integer Number of lines in a part
Read-Only

18

Programming the SimaPro COM Interface

Parameters Description

Part Products etc

if SimaPro.FindProcess ('Sample project', ptMaterial, 'steel', pc) then

begin
Pc.Edit;
I := PC.LineCount[ppEmissionsAir] - 1;
while I >= 0 do
begin
s := pc.Line[ppEmissionsAir, I].ObjectName2;
if Pc.Line[ppEmissionsAir, I].ObjectName2 = 'Carbon Dioxide, biogenic' then
Pc.DeletelLine[ppEmissionsAir, I]
else
Dec (I);
end;
Pc.Update;
end;

Process.Mode

Property Mode As String

Mode of the object, can be: Read, New
or Edit Read-Only

Process.ParamLine

Property ParamLine(ByVal ParameterType As TParameterType, ByVal LineNumber As Integer) As

ParamLine Returns a ParamLine object
Read-Only

Parameters Description

ParameterType ptinputParameter,
LineNumber Linenumber where you want to insert. -1 inserts at end

Process.ParamLineCount

Property ParamLineCount(ByVal ParameterType As TParameterType)

As Integer Number of parameters
Member of Process

Read-Only
Parameters Description
ParameterType ptinputParameter or ptCalculatedParameter

Process.ProcessType

Property ProcessType As
TProcessType Type of the process
Read-Only

Process.ProjectName

Property ProjectName As String
19

Programming the SimaPro COM Interface

Name of the project to which the process belongs
Read-Only

Process.Status
Property Status As TProcessStatus
Status of the process

Example
Set status to draft
Pc.Status := stDraft;

Process.Update

Sub Update()
Store the data of the object in the database and switch to read mode

Example
Change the waste type of 'Steel NL' to 'Steel'
pc := SimaPro.FindProcess (ptmaterial, 'Steel NL');
pc.Edit;
try
// change waste type of first product
pc.processline[ppProduct, 0] .WasteType := 'Steel';
pc.Update;
except

pc.Cancel;

end;

5.1.14 ProcessLine

Class ProcessLine
Alinein a process as seen on screen in SimaPro. Can be either products, inputs or outputs.

ProcessLine.Allocation
Property Allocation As

String
Allocation percentage of a product

ProcessLine. Amount
Property Amount As

String
Amount or percentage of product or substance
Member of ProcessLine

Example
Line.SetProduct ('eco invent unit processes', ptEnergy, 'Electricity UCTPE');
Line.Amount := '10';
Line.UnitName := 'kWh';

See also the example at SimaProServer.CreateProcess

20

ProcessLine.CategoryPath
Property CategoryPath As String
Category path of a product

Example
Change the category

AProcessLine.Category := "\others\chemicals';

ProcessLine.Comment
Property Comment As IStrings

Comment
Member of ProcessLine

ProcessLine.Distribution

Property Distribution As TDistribution
Distribution of amount

ProcessLine.LineNumber

Property LineNumber As Integer

Programming the SimaPro COM Interface

Index in the section of the process to which the ProcessLine object belongs

Read-Only

ProcessLine.Maximum
Property Maximum As Double
Maximum value of amount

ProcessLine.Minimum
Property Minimum As Double
Minimum value of amount

ProcessLine.ObjectName

Property ObjectName As String

Name of the product

See the example at SimaProServer.CreateProcess

ProcessLine.ObjectName2 Property

ObjectName2 As String

Sub-compartment or material name
Member of ProcessLine
Read-Only

ProcessLine.Part

Property Part As TProcessPart

Section in the process to which the ProcessLine object belongs

21

Read-Only

ProcessLine.Process
Property Process As Process

Process to which the ProcessLine object belongs
Read-Only

ProcessLine.ProcessType

Property ProcessType As TProcessType

Type of the product
Read-Only

ProcessLine.ProjectName
Property ProjectName As String

Name of the project to which the product belongs
Read-Only

ProcessLine.ProjectName2
Property ProjectName2 As String

Name of the project to which the material belongs
Read-Only

ProcessLine.SetMaterial

Programming the SimaPro COM Interface

Sub SetMaterial(ByVal ProjectName As String, ByVal ProductName As String)
Select a material and link it to the process; only for waste treament product and specific waste flow

Member of ProcessLine

Parameters Description

ProjectName Name of project (see SimaproServer.Projects)

ProductName Name of product

Only for advanced disposal modelling. Use SetProduct to link inputs from technosphere.

Example
PC.SetMaterial ('My project', 'Steel');

ProcessLine.SetProduct

Sub SetProduct(ByVal ProjectName As String, ByVal ProcessType As TProcessType, ByVal
ProductName As String) Select a product of process as an input and link it to the process

22

Programming the SimaPro COM Interface

Parameters Description

ProjectName Name of project
ProcessType
ProductName Name of the product

Link inputs from technosphere.

Example

Line.SetProduct ('eco invent unit processes', ptEnergy, 'Electricity UCTPE');
Line.Amount := '10';

Line.UnitName := 'kWh';

ProcessLine.SetSubstance

Sub SetSubstance(ByVal SubstanceName As String, ByVal SubCompartmentName As String)
Select a substance and link it to the process

Parameters Description

SubstanceName Name as in the substance list
SubCompartmentName Name of the subcompartment

Use this to define the emissions and raw material use of a process
Example

Line.SetSubstance ('Carbon dioxide', 'Air')

Line.Amount := '11.4"';
Line.UnitName := 'kg';
Pc.Update;

ProcessLine.StandardDeviation
Property StandardDeviation As Double
Standard deviation of amount

ProcessLine.UnitName
Property UnitName As String
Name of the unit of amount

Example

Line.SetProduct ('eco invent unit processes', ptEnergy, 'Electricity UCTPE');
Line.Amount := '10';

Line.UnitName := 'kWh';

See also the example at SimaProServer.CreateProcess

ProcessLine.WasteType

Property WasteType As String

Waste type of a product or specific waste flow
23

Programming the SimaPro COM Interface

5.1.15 Process Property

Select one of the available subtopics below to see detailed help on Process property

Object Property description
ParamLine Process to which the ParamLine object belongs
ProcessLine Process to which the ProcessLine object belongs

5.1.16 ProcessType Property

Select one of the available subtopics below to see detailed help on ProcessType property

Object Property description
Process Type of the process
ProcessLine Type of the product

5.1.17 ProductName Property

Select one of the available subtopics below to see detailed help on ProductName property

SimaProNetworkResult Name of the product
SimaProServer Name of a product
SimaProTreeResult Name of the product

5.1.18 ProjectName Property

Select one of the available subtopics below to see detailed help on ProjectName property

Object Property description
Process Name of the project to which the process belongs
ProcessLine Name of the project to which the product belongs

5.1.19 SimaProAnalyseResult

Class SimaProAnalyseResult

Object containing substance list or impact assessment score resulting from the calculation of a process
object.

SimaProAnalyseResult.Amount

Property Amount As Double
Amount of units substance or impact assessment score

Example
See SimaProServer.Analyse

24

Programming the SimaPro COM Interface

SimaProAnalyseResult.IndicatorName

Property IndicatorName As String
Name of substance, impact category etc. In case of single score it is empty

Example
See SimaProServer.Analyse

SimaProAnalyseResult.MainCompartmentName
Property MainCompartmentName As String
Only for inventory results

SimaProAnalyseResult.SubCompartmentName
Property SubCompartmentName As String
Only for inventory results

SimaProAnalyseResult.UnitName
Property UnitName As String
Unit (e.g. kg, m3)

Example
See SimaProServer.Analyse

5.1.20 SimaProCalculationError

Class SimaProCalculationError
Object containing error details resulting from the calculation of a process object.

SimaProCalculationError.Additionallnfo

Property Additionallnfo As String

SimaProCalculationError.ErrorCode
Property ErrorCode As Integer
Number of the error

SimaProCalculationError.ErrorDescription
Property ErrorDescription As String
Description of the error

25

Programming the SimaPro COM Interface

5.1.21 SimaProNetworkResult

Class SimaProNetworkResult
Object containing network flows resulting from the calculation of a process object.

SimaProNetworkResult. Amount
Property Amount As Double
Amount of the product

SimaProNetworkResult.ChildProductName
Property ChildProductName As String
Name of the child-product

SimaProNetworkResult.ProductName
Property ProductName As String
Name of the product

SimaProNetworkResult.UnitName
Property UnitName As String

Unit of the amount

Member of SimaProNetworkResult

5.1.22 SimaProServer

Class SimaProServer
Object handling connection to database and functions applied to collections of process objects.

SimaProServer.AddParamLine

Function AddParamLine(ByVal ParameterType As TParameterType, ByVal ParameterScope As
TParameterScope, ByVal LineNumber As Long) As ParamLine

Add a project or database parameter line and returns a ParamLine object

Parameters Description

ParameterType Type of parameter: Input or calculated
LineNumber LineNumber, -1 adds at end

ParameterScope psDatabase or psProject. psProject means currently open project

Return value
Returns ParamLine. If no project is open an exception is raised.

26

Programming the SimaPro COM Interface

Example
Set project parameter Ato 13

Param = SimaProServer.FindParameter ('OptionA', psDatabase)

if Param is nothing then

begin
Param = SimaProServer.AddParamLine (ptInputParameter, psDatabase, -1)
Param.Name = 'OptionA'
Param.Value = 13

End

SimaProServer.Alias
Property Alias As String
Currently used alias

See the example at SimaProServer.CreateProcess

SimaProServer.Aliases

Property Aliases As IStrings

List of available aliases, set Server first
Member of SimaProServer
Read-Only

SimaProServer.Analyse

Function Analyse(ByVal ProjectName As String, ByVal ProcessType As TProcessType, ByVal
ProductName As String, ByVal MethodProjectName As String, ByVal MethodName As String, ByVal
NWSetName As String) As Boolean

Perform the analyse function for a process or product stage
Member of SimaProServer

Parameters Description

ProjectName Name of project

ProcessType Type of process

ProductName Name of Product MethodProjectName
NWSetName Normalisation Weighting set.
ProjectName Name of project

ProcessType Type of process

Return value
Returns Boolean

Example

Show the inventory

SP.Analyse ('My project', ptMaterial, 'Steel', 'Methods', 'EI99', 'N/A");
// show inventory

for I := 0 to SP.ResultCount (rtInventory) - 1 do

begin

27

Programming the SimaPro COM Interface

Res := SP.AnalyseResult (rtInventory, I)
Print Res.Amount, Res.IndicatorName, Res.UnitName;

end;
SimaProServer.AnalyseResult

Function AnalyseResult(ByVal AnalyseResultType As TResultType, ByVal | As Integer)
As SimaProAnalyseResult Retrieve the result of the analyse function

Parameters Description

AnalyseResultType rtCharacterisation, rtDamage, rtNormalisation, rtWeighting,
rtSingleScore or rtinventory
I Index

Return value
Returns SimaProAnalyseResult

Example
See SimaProServer.Analyse

SimaProServer.AutoUpdate
Property AutoUpdate As Boolean
Member of SimaProServer

When a database change has occurred, all operations will throw an exception.
When this member has been set to true, a database conversion will occur, and operations can proceed.

SimaProServer.CalculationError

Function CalculationError(ByVal | As Integer) As SimaProCalculationError
Calculation error data

Parameters Description

| Index

Return value
Returns SimaProCalculationError

SimaProServer.CalculationErrorCount
Property CalculationErrorCount As Integer

Number of calculation errors
Read-Only

SimaProServer.CloseDatabase

Sub CloseDatabase()
Close the currently open database

28

Programming the SimaPro COM Interface

SimaProServer.CloseProject

Sub CloseProject()
Close the currently open project

SimaProServer.CreateProcess

Sub CreateProcess(ByVal ProcessType As TProcessType, ByRef Process As Process)
Creates a new process

Parameters Description

ProcessType ProcessType (ptMaterial, ptEnergy, etc)
Process Resulting process object
Example

Create 2 processes and link to each other, then link to an assembly (VB)

Dim SP As SimaProServer
Dim PC As Process

Dim PC2 As Process

Dim PC3 as Process

Dim PL As ProcesslLine

Set SP = New SimaProServer
SP.Server = "nexusdb@192.168.2.113"
SP.Alias = "Default"

SP.Database = "Professional"
SP.OpenDatabase

SP.Login "Manager", ""
SP.OpenProject "A COM DEMO"™, ""

SP.CreateProcess ptMaterial, PC
Set PL = PC.AddLine (ppProducts, -1)

PL.ObjectName = "Steel"

PL.UnitName = "kg"

PL.Amount = "2"

PL.Comment.Add ("My new created process")
PC.Update

' create second material process Case
SP.CreateProcess ptMaterial, PC2

Set PL = PC2.AddLine (ppProducts, 0)
PL.ObjectName = "Case"

PL.UnitName = "kg"

PL.Amount = "10"

' add input from Steel

Set PL = PC2.AddLine (ppMaterialsFuels, -1)

' input from steel

PL.SetProduct "A COM DEMO", ptMaterial, "Steel"
PL.Amount = "8"

PL.UnitName = "kg"

PC2.Update

' create Assembly product stage

SP.CreateProcess ptAssembly, PC3

Set PL = PC3.get Line (ppProducts, 0)

PL.ObjectName = "New Assembly"

PL.Comment.Add ("My newly created assembly")
PL.CategoryPath = "COM demonstration\Create process test"

' add Case material to assembly

Set PL = PC3.AddLine (ppAssembliesAndMaterials, -1)
PL.SetProduct "A COM DEMO", ptMaterial, "Case"
PL.Amount = "2"

PL.UnitName = "kg"

PC3.Update

29

mailto:nexusdb@192.168.2.113

SP.Logout
SP.CloseDatabase
Set SP = Nothing

SimaProServer.CreateSubstance

Programming the SimaPro COM Interface

Sub CreateSubstance(ByVal MainCompartment As String, ByRef Substance As Substance)

Create a new substance

Parameters Description

MainCompartment MainCompartment goes here (‘Air', 'Water', 'Soil', etc)
Substance Resulting substance object
Example

Create a new substance

SimaPro.CreateSubstance ('Air', Substance)
Substance.Name := 'My new substance'
Substance.UnitName := 'kg';

Substance.Update; // save in database

SimaProServer.CurrentProject
Property CurrentProject As String

Name of the currently open project
Read-Only

SimaProServer.CurrentUser

Property CurrentUser As String

Name of the user that is currently logged in
Read-Only

SimaProServer.Database

Property Database As String
Currently used database, see OpenDatabase

See the example at SimaProServer.CreateProcess

SimaProServer.DatabaseOpen

Property DatabaseOpen As Boolean

Indicates if a database is currently open
Read-Only

SimaProServer.Databases

Property Databases As IStrings

List of available databases, set Server and Alias first
Read-Only

SimaProServer.DeleteParamLine

Sub DeleteParamLine(ByVal ParameterType As TParameterType, ByVal ParameterScope As

30

Programming the SimaPro COM Interface

TParameterScope, ByVal LineNumber As Long)

Deletes a parameter from database or the current
project Member of SimaProServer

ParameterType Type of parameter (input or calculated)
ParameterScope Scope of parameter (project or database)
LineNumber Linenumber

SimaProServer.FindParameter
Function FindParameter(ByVal Name As String, ByVal ParameterScope As TParameterScope) As ParamLine
Finds a parameter in the database or current open project

Parameters Description
Name Name of parameter
ParameterScope Scope of parameter (project or database

Return value
Returns ParamLine if found

SimaProServer.FindProcess

Function FindProcess(ByVal ProjectName As String, ByVal ProcessType As TProcessType, ByVal ProductName
As String, ByRef Process As Process) As Boolean

Looks for a process in the project and libraries

Parameters Description
ProjectName Name of project
ProcessType Type of process
ProductName Name

Process Result object

Return value
Returns Boolean

Example

Remove lines from process
if SimaPro.FindProcess ('Sample project', ptMaterial, 'steel', pc) then

begin
Pc.Edit;
I := PC.LineCount[ppEmissionsAir] -1 ;
while I > 0 do
begin
s := pc.Line[ppEmissionsAir, I].ObjectName2;
if Pc.Line[ppEmissionsAir, I].ObjectName2 = 'Carbon Dioxide, biogenic' then
Pc.DeletelLine[ppEmissionsAir, I]
else

31

Programming the SimaPro COM Interface

Dec(I);
end;
Pc.Update;

end;

SimaProServer.FindProcessEx

Function FindProcessEx(ByVal ProjectName As String, ByVal ProcessType As TProcessType, ByVal
ProductName As String) As Process

FindProcess version that returns a Process

ProjectName Name of project
ProcessType Type of process
ProductName Name

Return value
Returns Process

Same as FindProcess but returns a process object. Useful in Java, which does not support passing
parameters by reference, or if you prefer this style of programming.

SimaProServer.FindSubstance

Function FindSubstance(ByVal MainCompartmentName As String, ByVal SubstanceName As String, ByRef
Substance As Substance) As Boolean

Find a substance in the database

MainCompartmentName ‘Water’, ‘Air’, etc
SubstanceName Required substancename
Substance Substance object

Return value
Returns Boolean

Example

Read CO2 CAS Number

PC.FindSubstance ('Air', 'Carbon dioxide', Substance);

Print Substance.CASNumber;
You can also use

PC.SubstanceCASnumber ('Air', 'Carbon dioxide')

SimaProServer.LoggedIin

Property LoggedIin As Boolean
32

Indicates if a user is currently logged in
Member of SimaProServer

Read-Only

SimaProServer.Login

Programming the SimaPro COM Interface

Function Login(ByVal UserName As String, ByVal Password As String) As Boolean
Log in the database, not needed for single user if manager-password = empty

Parameters Description

UserName Name of user
Password Password

Return value
Returns Boolean

See the example at SimaProServer.CreateProcess

SimaProServer.Logout
Function Logout() As Boolean
Log out from the database

Return value
Returns Boolean

See also the example at SimaProServer.CreateProcess

SimaProServer.MainCompartmentCount
Property MainCompartmentCount As Integer

Number of main-compartments
Read-Only

Example
List the maincompartments
for I := 0 to SP.MainCompartmentCount - 1 do

print SP.MainCompartmentName (i)

SimaProServer.MainCompartmentName

Property MainCompartmentName(ByVal | As Integer) As String

Name of a main-compartment
Read-Only

Parameters Description

| Index

Example

33

Programming the SimaPro COM Interface

See SimaProServer.MainCompartmentCount

SimaProServer.MethodCount

Property MethodCount As Integer

Number of impact assessment methods in the currently open project and selected libraries
Read-Only

SimaProServer.MethodName

Property MethodName(ByVal | As Integer) As String

Name of an impact assessment method
Read-Only

Parameters Description

| Index

SimaProServer.MethodProjectName

Property MethodProjectName(ByVal I As Integer) As String
Name of the project of an impact assessment method

Read-Only
Parameters Description
I Index

SimaProServer.Network

Function Network(ByVal ProjectName As String, ByVal ProcessType As TProcessType, ByVal
ProductName As String, ByVal MethodProjectName As String, ByVal MethodName As String, ByVal
NWSetName As String) As Boolean

Perform the network function for a process or product stage

Parameters Description

ProjectName Name of project

ProcessType ProcessType (ptMaterial, ptEnergy, etc)
ProductName Name of Product

MethodProjectName Project where methods are stored (often 'Methods')
MethodName name of the Method

NWSetName Normalisation Weighting set.

Return value
Returns Boolean

Example
Calculate a network and fetch the results of the top node

if SP.Network('My project', 'ptEnergy', 'Electricity', 'Methods', 'ei99', 'N/A') then

34

Programming the SimaPro COM Interface

begin

SP.NetworkCalcScore (rtIndicator, '', '', '');

for I := 0 to SimaPro.NetworkChildNodeCount[SimaPro.NetWorkTopNodeIndex] - 1 do

begin

Res := SP.NetworkResult (nrProductAmount,
SP.NetworkChildNodeIndex (SimaPro.NetWorkTopNodeIndex, i), 0);
print Res.ProductName, Res.Amount, Res.UnitName;

end;

end;

SimaProServer.NetworkCalcScore

Function NetworkCalcScore(ByVal ResultType As TResultType, ByVal Param1 As String, ByVal Param2 As
String, ByVal Param3 As String) As Boolean

Calculates the node and flow scores of a network.

ResultType Param1 Param2 Param3

rtCharacterisation Impact Category - -

rtDamage Damage Category - -

rtNormalisation Damage Category or Impact - -
Category

rtWeighting Damage Category or impact - -
Category

rtSingleScore - - -
rtinventory MainCompartment Subcompartment SubstanceName

You can perform multiple NetworkCalcScores calcualations on an existing Network.
Return value

Returns Boolean

Example
See SimaProServer.Network

SimaProServer.NetworkChildNodeCount

Property NetworkChildNodeCount(ByVal Nodelndex As Integer) As Integer
Number of child nodes of a network node

Read-Only
Nodelndex Index of the node

All nodes are indexed. This function return the number of children of a certain node.

Example
See SimaProServer.Network

SimaProServer.NetworkChildNodelndex

Property NetworkChildNodelndex(ByVal Nodelndex As Integer, ByVal FlowIndex As Integer) As Integer

35

Programming the SimaPro COM Interface

Index of a child node of a network node

Read-Only
Nodelndex Node
Flowindex Flow of that node

Points to a node, for example get the productname with NetworkProductName

SimaProServer.NetworkNodeCount
Property NetworkNodeCount As Integer

Number of nodes in the network
Read-Only

SimaProServer.NetworkProductName

Property NetworkProductName(ByVal Nodelndex As Integer) As String
Product name of a network node

Read-Only
Parameters Description
Nodelndex Node

SimaProServer.NetworkResult

Function NetworkResult(ByVal NodeResultType As TNodeResultType, ByVal Nodelndex As Integer, ByVal
FlowIndex As Integer) As SimaProNetworkResult

Retrieve the data of a network node

NodeResultType nrProductAmount, nrindicatorContribution, nrindicatorTotal,
nrFlowlndicator

Nodelndex Node index see NetworkNodeCount

Flowindex Flow index (per node) See NetworkChildNodeCount

Return value
Returns SimaProNetworkResult

Example
See SimaProServer.Network

SimaProServer.NetworkTopNodelndex
Property NetworkTopNodelndex As

Integer Index of the top node of the
36

Programming the SimaPro COM Interface

network
Read-Only

Example

See SimaProServer.Network

SimaProServer.NWSets

Property NWSets(ByVal ProjectName As String, ByVal MethodName As String) As IStrings
List of normalisation-weighting sets in a method

Read-Only

Parameters Description
ProjectName Name of Project
MethodName Name of Method
Example

Show the first NWSet

Print SP.NWSets ('methods', 'ecoindicator 99') [0]

SimaProServer.OpenDatabase

Sub OpenDatabase()
Open a database

Set Server, Alias and Database first

Example

SP.Server := 'local server';
SP.Alias := 'C:\DATA'
SP.Database := 'Professional';

SP.OpenDatabase;

See also the example at SimaProServer.CreateProcess

SimaProServer.OpenProject

Sub OpenProject(ByVal ProjectName As String, ByVal Password as String)
Open a project

Parameters Description

ProjectName Project
Password Only needed if the project is protected
Example

Open a project
SP.OpenProject('Introduction into LCA");

SimaProServer.ParamLine

Property ParamLine(ByVal ParameterType As TParameterType, ByVal ParameterScope As

TParameterScope, ByVal LineNumber As Long) As ParamLine
37

Programming the SimaPro COM Interface

Read-Only

Parameters Description

ParameterType Type of parameter (input or calculated)

ParameterScope Scope of parameter (project or database)

LineNumber Linenumber (zerobase) must be less thatn ParamLineCount

See process.Paramline and Paramlinecount for an example.

SimaProServer.ParamLineCount

Property ParamLineCount(ByVal ParameterType As TParameterType, ByVal ParameterScope As
TParameterScope) As Long

Read-Only
ParameterType Type of parameter (input or calculated)
ParameterScope Scope of parameter (psProject or psDatabase)

For psProject a project must be open.
Returns number of parameters

See process.Paramline and Paramlinecount for an example.

SimaProServer.Product

Property Product(ByVal | As Long) As Process

Returns the process directly adressed by an index (see ProductCount)
Member of SimaProServer
Read-Only

Parameters Description
I Index of product

Gives direct access to the product listed with productname.

SimaProServer.ProductCategoryPath

Property ProductCategoryPath(ByVal | As Long) As String
Returns the complete category adressed by an index
Read-Only

Parameters Description
| Index of product

38

Programming the SimaPro COM Interface

SimaProServer.ProductCount
Property ProductCount As

Integer

Number of processes and product-stages in the currently open project and selected libraries
Read-Only

SimaProServer.ProductName

Property ProductName(ByVal | As Integer) As

String Name of a product
Read-Only

Parameters Description
I Index of product

Used for listing data

SimaProServer.ProductProcessType

Property ProductProcessType(ByVal | As Integer) As TProcessType

Process type of a product
Read-Only

Parameters Description
I Index of product

SimaProServer.ProductProcessTypeName

Property ProductProcessTypeName(ByVal | As Integer) As String

Description of the process type of a product
Read-Only

Parameters Description
I Index of product

SimaProServer.ProductProjectName

Property ProductProjectName(ByVal | As Integer) As String

Name of the project of a product
Read-Only

Parameters Description
| Index of product

SimaProServer.ProductUnitName

Property ProductUnitName (ByVal | As Integer) As String

Name of the project of a unit
Read-Only

Parameters Description

39

I Index of product

SimaProServer.ProductQuantityName

Property ProductQuantityName (ByVal | As Integer) As String

Name of the project of a quantity
Read-Only

Programming the SimaPro COM Interface

Parameters Description

I Index of product

SimaProServer.ProjectOpen

Property ProjectOpen As Boolean

Indicates if a project is currently open
Read-Only

SimaProServer.Projects

Property Projects As IStrings

List of available projects, open database and log in first
Read-Only

SimaProServer.QuantityCount
Property QuantityCount As Integer

Number of quantities
Read-Only

SimaProServer.QuantityName

Property QuantityName(ByVal | As Integer) As String

Name of a quantity
Read-Only

Parameters Description

1 Index of product

Listing the quantities in the database.

SimaProServer.ResultCount

Property ResultCount(ByVal ResultType As TResultType) As

Integer Number of indicators
Read-Only

Parameters Description

ResultType rtCharacterisation etc

40

Programming the SimaPro COM Interface

SimaProServer.ResultindicatorName

Property ResultindicatorName(ByVal ResultType As TResultType, ByVal | As Integer) As String
Name of an indicator

Read-Only

Parameters Description
ResultType rtCharacterisation etc
| Index

SimaProServer.ResultMainCompartmentName

Property ResultMainCompartmentName(ByVal | As Integer) As String

Name of the main-compartment of a substance
Read-Only

Parameters Description
I Index

SimaProServer.ResultSubCompartmentName

Property ResultSubCompartmentName(ByVal | As Integer) As String

Name of the sub-compartment of a substance
Read-Only

Parameters Description
I Index

SimaProServer.SaveParameters

Sub SaveParameters()
Saving the changes in the parameters on database and project level

SimaProServer.Server

Property Server As String
Currently used server, e.g. 'local server' or 'myserver@w.p1.local’

SimaProServer.Servers
Property Servers As IStrings

List of available servers
Read-Only

SimaProServer.SubCompartmentCount

Property SubCompartmentCount(ByVal MainCompartmentName As String)

As Integer Number of sub-compartments
Read-Only

Parameters Description
MainCompartmentName Name of main compatment

41

mailto:%27myserver@w.p1.local

Programming the SimaPro COM Interface

SimaProServer.SubCompartmentName

Property SubCompartmentName(ByVal MainCompartmentName As String, ByVal | As Integer) As String
Name of a sub-compartment

Read-Only

Parameters Description
MainCompartmentName Name of main compatment
I Index

SimaProServer.SubstanceCASnumber

Property SubstanceCASNumber(ByVal MainCompartmentName As String, ByVal | As Integer) As String
CAS number of a substance

Read-Only

Parameters Description
MainCompartmentName Main compartment (‘Air’, ‘Water’, etc)
| Index

Meant for listing the substances. Addressing with index.

Example
See FindSubstance

SimaProServer.Substance

Property Substance(ByVal MainCompartmentName As String, ByVal | As Long) As Substance
Return a substance object adressed by an index (see SubstanceCount)

Read-Only

Parameters Description
MainCompartmentName Main compartment (‘Air’, ‘Water’, etc)
I Index

SimaProServer.SubstanceCount

Property SubstanceCount(ByVal MainCompartmentName As String) As Integer
Number of substances

Read-Only
Parameters Description

MainCompartmentName Main compartment (‘Air’, ‘Water’, etc)

Meant for listing the Substances.

Example
List all substances

42

Programming the SimaPro COM Interface

For | := 0 to SimaPro.SubstanceCount('Air') - 1 do print

SimaPro.SubstanceName('Air', 1);

SimaProServer.SubstanceDefaultUnit
Property SubstanceDefaultUnit(ByVal MainCompartmentName As String, ByVal | As Integer) As String
Default unit of a substance

Read-Only
Parameters Description
MainCompartmentName Main compartment (‘Air’, 'Water’, etc)

I Index
Meant for listing the substances. Addressing with index.

SimaProServer.SubstanceName
Property SubstanceName(ByVal MainCompartmentName As String, ByVal | As Integer) As String
Name of a substance

Read-Only
Parameters Description
MainCompartmentName Main compartment (‘Air’, 'Water’, etc)

| Index

Meant for listing the substances. Addressing with index.

Example
List all substances
For I := 0 to SimaPro.SubstanceCount ('Air') - 1 do

print SimaPro.SubstanceName ('Air', I);

SimaProServer.Tree

Function Tree(ByVal ProjectName As String, ByVal ProcessType As TProcessType, ByVal ProductName As
String, ByVal MethodProjectName As String, ByVal MethodName As String, ByVal NWSetName As String)
As Boolean

Perform the tree function for a process or product stage

ProjectName Name of project

ProcessType ProcessType (ptMaterial, ptEnergy, etc)

ProductName Name of product

MethodProjectName Name of project where methods is stored (often 'methods')
MethodName Name of method

NWSetName Name of normalisation weigting set

43

Programming the SimaPro COM Interface

Return value
Returns Boolean

SimaProServer.TreeCalcScore
Function TreeCalcScore(ByVal ResultType As TResultType, ByVal Param1 As String, ByVal Param2 As
String, ByVal Param3 As String) As Boolean

Calculates the node and flow scores of a tree
Member of SimaProServer

ResultType Param1 Param2 Param3

rtCharacterisation Impact Category - -

rtDamage Damage Category - -

rtNormalisation Damage Category or Impact - -
Category

rtWeighting Damage Category or impact - -
Category

rtSingleScore - - -
rtinventory MainCompartment Subcompartment SubstanceName

Return value
Returns Boolean

SimaProServer.TreeChildNodeCount
Property TreeChildNodeCount(ByVal Nodelndex As Integer) As Integer

Number of child nodes of a tree node
Member of SimaProServer

Read-Only
Parameters Description
Nodelndex Node index

SimaProServer.TreeChildNodelndex
Property TreeChildNodelndex(ByVal Nodelndex As Integer, ByVal FlowIndex As Integer)

As Integer Index of a child node of a tree node
Member of SimaProServer

Read-Only
Nodelndex Node index
Flowindex Flow index

SimaProServer.TreeNodeCount
Property TreeNodeCount As Integer

44

Programming the SimaPro COM Interface

Number of nodes in the tree
Member of SimaProServer
Read-Only

SimaProServer.TreeProductName

Property TreeProductName(ByVal Nodelndex As Integer) As String

Product name of a tree node
Member of SimaProServer

Read-Only
Nodelndex Node index

SimaProServer.TreeResult

Function TreeResult(ByVal NodeResultType As TNodeResultType, ByVal Nodelndex As Integer) As

SimaProTreeResult Retrieve the data of a tree node
Member of SimaProServer

Parameters Description

NodeResultType nrProductAmount, nrindicatorContribution, nrindicatorTotal,
nrFlowlndicator
Nodelndex Nodeindex (refers to list of Nodes of network or tree)

Return value
Returns SimaProTreeResult

SimaProServer.TreeTopNodelndex
Property TreeTopNodelndex As Integer

Index of the top node of the tree
Member of SimaProServer
Read-Only

SimaProServer.UnitCount

Property UnitCount(ByVal QuantityName As String) As Integer

Number of units per quantity
Member of SimaProServer

Read-Only

Parameters Description
QuantityName Quantity
Example

Number of 'Mass' units
for |:= 0 to Sp.unitCount('Mass') - 1 do print

Sp.UnitName('Mass', I);
45

Programming the SimaPro COM Interface

SimaProServer.UnitDefault

Property UnitDefault(ByVal QuantityName As String) As String
Default unit of a quantity (factor = 1)

Member of SimaProServer

Read-Only

Parameters
QuantityName

Description
Quantity (‘Mass', 'Volume' etc)

SimaProServer.UnitFactor

Property UnitFactor(ByVal QuantityName As String, ByVal | As Integer) As Double
Factor of a unit

Member of SimaProServer

Read-Only

Parameters Description

QuantityName Quantity ('Mass', 'Volume' etc)
| Index

SimaProServer.UnitMetric

Property UnitMetric(ByVal QuantityName As String, ByVal | As Integer) As Boolean
Indicates if a unit is metric
Member of SimaProServer

Read-Only

Parameters Description

QuantityName Quantity ('Mass', 'Volume' etc)
| Index

SimaProServer.UnitName

Property UnitName(ByVal QuantityName As String, ByVal | As Integer) As String
Name of a unit

Member of SimaProServer

Read-Only
Parameters Description
QuantityName Quantity ('Mass', 'Volume' etc)
I Index

Example

Number of 'Mass' units
for | := 0 to Sp.unitCount('Mass') - 1 do print
Sp.UnitName('Mass', I);

46

Programming the SimaPro COM Interface

SimaProServer.WasteTypeCount
Property WasteTypeCount As Integer

Number of waste-types

Member of SimaProServer
Read-Only

SimaProServer.WasteTypeName

Property WasteTypeName(ByVal | As Integer) As String

Name of a waste-type
Member of SimaProServer

Read-Only
Parameters Description

| Index

5.1.23 SimaProTreeResult

Class SimaProTreeResult

Object containing tree flows resulting from the calculation of a process object.
SimaProTreeResult.Amount

Property Amount As Double
Amount of the product

SimaProTreeResult.ProductName
Property ProductName As String
Name of the product

SimaProTreeResult.UnitName
Property UnitName As String
Unit of the amount

Member of SimaProTreeResult
SimaProTreeResult.Valid

Property Valid As Boolean
Indicates if the node is part of the tree

5.1.24 StandardDeviation Property

Select one of the available subtopics below to see detailed help on StandardDeviation property

Parameters Description

ParamLine Standard deviation of the input parameter
ProcessLine Standard deviation of amount

47

5.1.25 SubCompartmentName Property

Programming the SimaPro COM Interface

Select one of the available subtopics below to see detailed help on SubCompartmentName property

Parameters Description

SimaProAnalyseResult

SimaProServer Name of a sub-compartment

5.1.26 Substance

Class Substance

Represents a substance in SimaPro. Use to edit, find or use substances.

Substance.Cancel

Sub Cancel()
Cancel edit mode and returns to read mode

Substance.CASnumber
Property CASNumber As String
CAS number

Example

Substance.Casnumber := '45-32-45"

Substance.Comment

Property Comment As IStrings
Comment

Substance.DefaultUnit

Property DefaultUnit As String
Default unit, defines also the quantity

Substance.Edit

Sub Edit()
Set the object in edit mode

Substance.MainCompartment

Property MainCompartment As String
Main compartment (e.g. 'Airborne emission’)
Read-Only

Substance.Mode

Property Mode As String

Mode of the object, can be: Read, New or Edit
Read-Only

48

Programming the SimaPro COM Interface

Substance.Name

Property Name As String
Name of the substance (e.g. 'Carbon dioxide")

Substance.Update

Sub Update()
Store the data of the object in the database and switch to read mode

Example
Create a new substance

SimaPro.CreateSubstance ('Air', Substance)
Substance.Name := 'My new substance'
Substance.UnitName := 'kg';

Substance.Update; // save in database

5.1.27 UnitName Property

Select one of the available subtopics below to see detailed help on UnitName property

ParamLine Name of the unit of amount
SimaProAnalyseResult Unit (e.g. kg, m3)
SimaProNetworkResult Unit (e.g. kg, m3)
SimaProServer Name of a unit
SimaProTreeResult Unit of the amount

5.1.28 Update Method

Select one of the available subtopics below to see detailed help on Update method

Object Property description

Process Store the data of the object in the database and switch to
read mode

Substance Store the data of the object in the database and switch to
read mode

5.2 License functions & properties

5.2.1 SimaProServer.ActivateAuto

Function ActivateAuto() As TLicenseStatus
Contacts the PRé activation server to perform an automated activation. The easiest way to activate if you
have a direct connection to internet.

49

Programming the SimaPro COM Interface

Parameters Description

Return value Returns IsLicenseAlreadyActivated or result of
SimaProServer.LicenseStatus

5.2.2 SimaProServer.ActivateBrowser

Property ActivateBrowser As String

Returns the URL on which activation can be done manually.
Member of SimaProServer

try
{

textBlockl.Text += "BrowserActivation: " + SPl.ActivateBrowser + "\r\n";

}

catch (Exception u)

{
textBlockl.Text += "Exception BrowserActivation: " + u.Message + "\r\n";

}

5.2.3 SimaProServer.ActivateEmailAddress

Property ActivateEmailAddress As String

The email address to which you can send your activation request
Member of SimaProServer

Example
try
{
textBlockl.Text += "ActivateEmail: " 4+ SPl.ActivateEmailAddress + "\r\n";

}

catch (Exception u)

{

textBlockl.Text += "Exception ActivateEmail: " + u.Message + "\r\n";

}

5.2.4 SimaProServer.ActivateEmailBody

Property ActivateEmailAddress As String

The email body to use when you can send your activation request by mail
Member of SimaProServer

5.2.5 SimaProServer.ActivateEmailSubject

Property ActivateEmailAddress As String

The email subject used to send your activation request by mail
Member of SimaProServer

5.2.6 SimaProServer.ActivateMachinelID

Property ActivateMachinelD As String
The MachinelD on which you'll want to activate your license (needed for web, and email activation)
50

Programming the SimaPro COM Interface

Member of SimaProServer
try

{

textBlockl.Text += "BrowserActivation: " + SP1. ActivateMachineID+ "\r\n";

}

catch (Exception u)

{
textBlockl.Text += "Exception ActivateMachineID: " + u.Message + "\r\n";

}

5.2.7 SimaProServer.ActivateLicense

Function ActivateLicense(ByVal ActivationCode As String) As TLicenseStatus
Checks to see if ActivationCode parameters contain correct code, and if so, will activate the license.

Parameters Description

ActivationCode The activationcode as a string
Return value IsActivated, IsWrongActivationCode, IsNotRegistered

5.2.8 SimaProServer.DeactivateLicense

Function DeactivateLicense() As Licensestatus
Deactivates the license on the Pre server and on the machine.

Parameters Description

Return value IsDeactivated , IsNotRegistered,

5.2.9 SimaProServer.ExpirationDate (obsolete)
This function is replaced by SimaProServer.LicenseExpireDate

Property ExpirationDate As Date

5.2.10 SimaProServer.IsActivated (obsolete)
This function is replaced by SimaProServer.Licensestatus

Property IsActivated As TLicenseStatus

Returns the license status whether current license is activated or not

5.2.11 SimaProServer.IsRegistered (obsolete)
This function is replaced by SimaProServer.Licensestatus

Property IsRegistered As TLicenseStatus
Returns the license status, based on whether current license is activated or not

Parameters Description

Return value IsNoLicense, IsLicenseExpired, IsNoLicenseForCom,
IsRegistered, IsNotRegistered
51

Programming the SimaPro COM Interface

5.2.12 SimaProServer.IsReleaseAllowed

Function ActivatelLicense(ByVal Product as TSoftwareProduct, ReleaseDate as Date)
As Boolean Checks to see if the service contract was active at the requested date.

Product The requested product
ReleaseDate Releasedate of product
Return value True/ False

5.2.13 SimaProServer.IsSIngleUser

Property IsSIngleUser As Boolean
Returns False if a valid multiuser license is active or expired. Otherwise it returns True

5.2.14 SimaProServer.LicenseExpireDate

Function ActivateLicense(ByVal Product as TSoftwareProduct)
As Date Get the expiry date of license of requested product.

Parameters Description
Product The requested product
Return value Expiredate

5.2.15 SimaProServer.LicenseType
Property LicenseType As String

Returns 'Indefinite’ / 'Subscription' / 'Unknown'

5.2.16 SimaProServer.LicenseStatus

Function ActivateLicense(ByVal Product as TSoftwareProduct) As TLicenseSatatus
Get the current licence status of requested product.

Parameters Description
Product The requested product
Return value IsLicenseExpired/ IsActivatedWithService/

IsActivatedNoService/ IsDemoMode/ IsDemoExpired/
IsRegistered/ IsNoLicense

5.2.17 SimaProServer.RegisterLicense

Function RegisterLicense (ByVal LicenseCode As string, ByVal RegistrationName As string) As
TLicenseStatus Registers the license.

52

Programming the SimaPro COM Interface

LicenseCode Licensecode as a string

RegistrationName Registration name as a string

Return value IsRegistered, IsRegistrationFileError, IsLicenseExpired,
IsNotRegistered

5.2.18 SimaProServer.RegistrationCode

Property RegistrationCode As String
Returns a string with the first row of the registration code.

5.2.19 SimaProServer.RegistrationName

Property RegistrationName As String
Returns a string with the name used for the registration code.

5.2.20 SimaProServer.ServerVersion

Property ServerVersion As String
Returns: Textual presentation of the current SimaPro software version.

5.2.21 SimaProServer.ServiceEndDate
Function ServiceEndDate (ByVal Product as TSoftwareProduct) As Date

Get the expiration date of the service contract belonging to the license of requested product.

Parameters Description

Product The requested product
Return value Expiry date

5.2.22 SimaProServer.SimaProVersion
Property SimaProVersion As String
Returns: 'Compact'/ 'Analyst'/ 'Developer'/ 'Faculty'/ 'Classroom'/ 'PhD'/ 'No license found'

5.2.23 SimaProServer.Supportinfo

Property Supportinfo As String
Returns a string with text which can be used as body of a support request mail.

53

5.3 Enumerated types

5.3.1 TDistribution

Enum TDistribution

Constant Value
dsUndefined 0
dsLogNormal 1
dsNormal 2
dsTriangle 3
dsUniform 4

5.3.2 TLicenseStatus

Constant
IsRegistered
IsActivated
IsNoLicense
IsLicenseExpired

Value

0
1
2
3

IsOnlySingleUserLicenseAllowed 4

IsOnlyMulitUserLicenseAllowed
IsActivationServerUnavailable
[sActivationLimitReached
IsNotActivated

IsNotRegistered

IsBlackListed
IsValidationConnectionError
IsinvalidActivationKey

IsLicenseAlreadyActivated

IsDeactivationLimitReached

IsRegistrationFileError

5

6

11
12
13

Programming the SimaPro COM Interface

Description

Distribution is not defined
Lognormal

Normal (Gaussian)
Triangle

Uniform

Description

Registred, not activated

Activated

No license registered

Temporary license is currently expired
Registration attempt failed; Multi-user licenses
can't be used when installed as single user
Registration attempt failed; Single-user licenses
can't be used when installed as multi user
Activation attempt failed, activationserver
unavailable

Activation attempt failed, no more activations
for this license

Activation status (obsolete)

Registration status

Activation attempt failed, license is blacklisted
by Pre consultants

Obsolete

Attempt to enter activation key failed; Already
activated IsDeactivated

Activation attempt failed, Too many
deactivations have taken place last weeks
IsNoLicenseForCom

Failed to create licensefile for registrationcode
IsRegisteredAsDemo

54

Programming the SimaPro COM Interface

IsUnknownStatus 19 If some unforeseen problems in the
licensesystem of Simapro uccurs, this value

might be returned

IsWrongActivationCode 20 Attempt to enter activation key failed;Invalid
activationkey IsActivatedWithService

or indefinite in servicecontract

period)
IsActivatedNoService 22 Simapro license is currently active, and outside
servicecontract period (indefinite
license)
IsDemoMode 23 Simapro is running without license with demo
limitations
IsDemoExpired 24
5.3.3 TNodeResultType
Enum TNodeResultType
Type of result from a network or tree node
Constant Value Description
nrProductAmount 0 Amount of a product
nrindicatorContribution 1 Contribution of a product to the selected
indicator
nrindicatorTotal 2 Contribution of a product including all sub-

processes to the selected indicator
nrFlowlIndicator 3 Contribution of a flow to the selected indicator

5.3.4 TParameterType

Enum TParameterType

Constant Value Description

ptinputParameter 0 Parameter is a constant value optional with
distribution data

ptCalculatedParameter 1 Parameter is an expression

5.3.5 TProcessPart

Enum TProcessPart Parts of a process

Constant Value Description

ppProducts 0 Products (outputs)

ppMaterialsFuels 1 Inputs from technosphere (other processes)
ppElectricityHeat 2 Inputs from technosphere (other processes)
ppAvoidedProducts 3 Avoided product

55

ppWasteToTreatment
ppRawMaterials
ppAirborneEmissions
ppWaterborneEmissions
ppFinalWasteFlows
ppEmissionsToSoil
ppNonMaterialEmissions
ppSociallssues
ppEconomiclssues
ppSpecificWaste
ppRemainingWaste
ppSubAssembly
ppReferencedAssembly
ppAssembliesAndMaterials
ppProcesses
ppWasteScenarios
ppDisposalScenarios
ppAdditionalLifeCycles

ppDisassemblies
ppReuses

ppWasteOrDisposalScenario

5.3.6 TProcessStatus

Enum TProcessStatus

Constant
StEmpty
stTemporary
stDraft
stToBeRevised
stToBeReviewed

5.3.7 TProcessType

Enum TProcessType

Constant
ptMaterial

00 N o Ul M

Value

A W N -

Value

Programming the SimaPro COM Interface

Waste

Use of resources (raw materials)

Emissions to air

Emissions to water

Emissions to waste

Emissions to soil

Non material emissions

Social issues

Economic issues

Outputs to specific waste

Remaining waste

Subassembly (product stages only)
Referenced assembly (product stages only)
Assemblies or materials (product stages only)
Process (product stages only)

Waste scenario (product stages only)
Disposal scenario (product stages only)
Additional life cycle (Life cycle product stage
only)

Disassembly (product stages only)

Reuse (product stages only)

Waste or disposal scenario (product stages
only)

Description

No status

Temporary process
Draft, work to be done
To be revised

To be reviewed

Description
Material process

56

ptEnergy
ptTransport
ptProcessing
ptUse
ptWasteScenario
ptWasteTreatment
ptAssembly
ptLifeCycle
ptDisposalScenario
ptDisassembly
ptReuse

- = O 0o NJOoO U b W N =

- O

5.3.8 TResultType

Enum TResultType

Constant Value

rtCharacterisation
rtDamage
rtNormalisation
rtWeighting
rtSingleScore

u b W N = O

rtinventory

5.3.9 TSoftwareProduct

Constant Value

spSimaPro 0
spCOM 1

Programming the SimaPro COM Interface

Energy Process
Transport process
Processing process
Use process

Waste scenario

Waste treatment
Assembly product stage
Life cycle product stage
Disposal scenario
Disassembly

Reuse

Description
Characterisation score
Damage score
Normalised score
Weighted score

Single score

Inventory results (LCI)

Description

The SimaPro application

The COM-interface of SimaPro

57

Programming the SimaPro COM Interface

6 Contact Us

Please contact us if you have questions about the COM interface or SimaPro in general.

e In SimaPro: Help > Contact SimaPro Support (recommended)

e SimaPro Help Center contact form: https://support.simapro.com/s/contactsupport

e E-mail: support@simapro.com

e Phone: +31 33 4504010

58

https://support.simapro.com/s/contactsupport
mailto:support@simapro.com

