
Programming the SimaPro
COM Interface

About SimaPro
SimaPro was developed by PRé with the goal of making sustainability a fact-

based endeavor. PRé has been a leading voice in sustainability metrics and life

cycle thinking development for nearly 30 years, pioneering the field of

environmental and social impact assessment. We develop tools that help you

create value and drive sustainable change.

SimaPro is distributed through a Global Partner Network. All partners were carefully selected by PRé. A

partner in your country will act as your local SimaPro sales and support representative and can show you

a personal demo or provide more information.

Find your local partner: simapro.com/global-partner-network

Get in touch
T +31 33 450 40 10

E support@simapro.com

W simapro.com | support.simapro.com | pre-sustainability.com

Title: Programming the SimaPro COM interface

Written by: PRé Sustainability

Version: 1.6

Date: November 2024

Copyright: © 2024 PRé Sustainability B.V. All rights reserved.

PRé grants the right to distribute and print the unchanged PDF

version of this manual for non-commercial purposes only.

Parts of the manual may be reproduced in other work only after

permission and if a clear reference is made that PRé is the author.

https://simapro.com/global-partner-network/
mailto:support@pre-sustainability.com
http://www.simapro.com/
http://www.pre-sustainability.com/

1

Programming the SimaPro COM Interface

Table of Contents

1 Introduction ... 2

2 Supported environments and operating systems .. 2

3 Architecture .. 3

4 Technical samples ... 3
4.1 VBA (Excel / Word) 3

4.2 Delphi 4

4.3 PHP 5

4.4 C++ 6

4.5 VB.NET Sample 6

4.6 C# Samples 8

5 Reference .. 11
5.1 Core functions/properties 11

5.2 License functions & properties 49

5.3 Enumerated types 54

6 Contact Us .. 58

2

Programming the SimaPro COM Interface

1 Introduction
SimaPro Craft is a versatile LCA tool, but in some occasions you need more than a stand-alone tool. For

example, if you want to analyze a lot of data automatically you may want to integrate SimaPro and your

business software.

In the SimaPro Developer version a COM-interface is available. This allows the user to link SimaPro to

other tools in order to automate processes, saving you time and making your work more efficient.

Please note that you need to program your own interface.

Most functions and properties are only available if you have a valid SimaPro Developer license. Some

functions, i.e. those that check and handle licenses, are available without any Simapro license.

Through the COM interface, you can do the following actions:

• Run server functions (for instance you can check if your license is valid or how many libraries

exist in a database)

• Open or close SimaPro databases and projects

• Read, create, edit, delete datasets, parameters

• Read, create, edit substances

• Run calculations per reference default unit (for instance 1 kg, 1 tkm, 1 MJ, etc)

However, please note that some functions or fields are not accessible via the COM interface. These are:

• The documentation fields for processes

• Specific calculation switches, for instance, you cannot choose to exclude long-term emissions

• Library switch

• Uncertainty analysis

• Comparing multiple datasets

2 Supported environments and operating
systems
All software that can use COM interface are supported, for example:

• Excel, Word (VBA)

• Delphi

• C++

• Visual Basic

• PHP

• Visual studio (C#, VB.NET)

Using SimaPro and the COM interface to support a web server requires more on the user rights level. Most

easy to use is .NET, but ASP is also possible. COM is typical for Windows so it is only available on Windows

Systems.

3

Programming the SimaPro COM Interface

3 Architecture
Every caller has its own workspace within SimaPro. This workspace contains the opened database,

project and calculation results of the last calculation. See the diagram below that represents the

workflow.

Figure 3.1 COM interface workflow

4 Technical samples
Below you find some simple examples. Note for all samples: adapt the server name, alias, database and

project and process names to your own situation. If you use the COM interface with a single user version

then adapt the connection properties according to the following guidelines:

• Server is not empty but “local server”

• Alias is the directory where your database files reside

• Login details are ignored, i.e. User name and password

• The path to use for Alias and the name to use for Database can be found by opening the

SimaPro application and selecting the menu option File->Open SimaPro Database

• The list of available projects can be found by opening the SimaPro application and selecting the

menu option File > Open Project

4.1 VBA (Excel / Word)
This example creates a substance and 2 processes including parameters. One process gets input

from the other. Be sure to include “Simapro Library ” to your VBA-references.

Sub CreateProcess()

Dim SP As SimaProServer

Dim PC As Process

Dim PC2 As Process

Dim PL As ProcessLine

Dim Param As ParamLine

Dim Subs As Substance

Set SP = New SimaProServer

SP.Server = "nexusdb@192.168.1.220"

SP.Alias = "Default"

mailto:nexusdb@192.168.1.220

4

Programming the SimaPro COM Interface

SP.Database = "Professional"

SP.OpenDatabase

SP.Login "Manager", ""

SP.OpenProject "Introduction to SimaPro 8", ""

SP.CreateSubstance "Air", Subs

Subs.CASNumber = "4-5-13"

Subs.Name = "Some substance"

Subs.DefaultUnit = "kg"

Subs.Update

SP.CreateProcess ptMaterial, PC

Set PL = PC.AddLine(ppProduct, -1)

PL.ObjectName = "Steel 2"

PL.UnitName = "kg"

PL.Amount = "2"

PL.Comment.Add ("My new created process")

PL.CategoryPath = "Chemicals\inorganic"

PC.Update

' create second material process Case

SP.CreateProcess ptMaterial, PC2

Set PL = PC2.AddLine(ppProducts, 0)

PL.ObjectName = "Case 2"

PL.UnitName = "kg"

PL.Amount = "10"

Set Param = PC2.AddParamLine(ptInputParameter, -1)

Param.Name = "A"

Param.Value = "2,3"

' add input from Steel

Set PL = PC2.AddLine(ppMaterialsFuels, -1)

' input from steel

PL.SetProduct "Introduction to SimaPro 7", ptMaterial, "Steel 2"

PL.Amount = "8"

PL.UnitName = "kg"

Set PL = PC2.AddLine(ppAirborneEmissions, -1)

' input from steel

PL.SetSubstance "Some substance", ""

PL.Amount = "A+1"

PL.UnitName = "kg"

PC2.Update

SP.Logout

SP.CloseDatabase

Set SP = Nothing

End Sub

4.2 Delphi
4.2.1 Calculate a single score
This example calculates the single score of a process, using the Eco-indicator 99 H/A method and returns

the result.

var

SimaPro: SimaProServer;

begin

SimaPro := CoSimaProServer.Create;

SimaPro.Server := 'nexusdb@192.168.1.220';

SimaPro.Alias := 'Default';

SimaPro.Database := 'Professional';

SimaPro.OpenDatabase;

mailto:%27nexusdb@192.168.1.220

5

Programming the SimaPro COM Interface

SimaPro.Login ('Manager', '');

SimaPro.OpenProject ('Introduction to SimaPro 7', '');

if SimaPro.Analyse('BUWAL250', ptMaterial, Electricity Netherlands B250 ',

'Methods', 'Eco-indicator 99 (H)', 'Europe EI 99 H/A') then

begin

memo1.lines.add('single score = ');

memo1.lines.add(FloatToStr(SimaPro.AnalyseResult(rtSingleScore, 0).Amount));

end;

4.2.2 Create a process
This example creates a process with an input of plastic.

var

SimaPro: SimaProServer;

PC2: Process;

PL: ProcessLine;

begin

SimaPro := CoSimaProServer.Create;

SimaPro.Server := 'nexusdb@192.168.1.220';

SimaPro.Alias := 'Default';

SimaPro.Database := 'Professional';

SimaPro.OpenDatabase;

SimaPro.Login ('Manager', '');

SimaPro.OpenProject ('Introduction to SimaPro 7', '');

SimaPro.CreateProcess (ptMaterial, PC2);

PL := PC2.AddLine(ppProducts, 0);

PL.ObjectName := 'Case 2';

PL.UnitName := 'kg';

PL.Amount := '10';

PL := PC2.AddLine(ppMaterialsFuels, -1);

PL.SetProduct ('BUWAL250', ptMaterial, ' PVC B250');

PL.Amount := '8';

PL.UnitName := 'kg';

PC2.Update;

memo1.lines.add('ready');

4.3 PHP
This example, for PHP in console mode, prints an overview of all processes and product stages in a

project to the console.

<?php

$SP = new COM("SimaPro.SimaProServer");

$SP->Server = 'nexusdb@192.168.1.111';

$SP->Alias = 'Default';

$SP->Database = 'Professional';

$SP->OpenDatabase;

$SP->Login ('Manager', '');

$SP->OpenProject ('Introduction to SimaPro 7', '');

print $SP->ProductCount + "\n";

for ($I = 1; $I < $SP->ProductCount; $I = $I + 1) {

print $SP->ProductName($I) . "\n";

}

$sp = null;

?>

mailto:%27nexusdb@192.168.1.220
mailto:%27nexusdb@192.168.1.111

6

Programming the SimaPro COM Interface

4.4 C++
The C++ is more complex due to the memory allocation requirements. Precondition is a form with a

memo called memo1. Otherwise replace the “Memo1->Lines-Add” part with more suitable code. This

example below calculates the single score of a process, using the Eco-indicator 99 H/A method and

returns the result.

BSTR Server = ::SysAllocString(L"nexusdb@192.168.1.220");

BSTR Alias = ::SysAllocString(L"Default");

BSTR Database = ::SysAllocString(L"Professional");

BSTR User = ::SysAllocString(L"Manager");

BSTR Project = ::SysAllocString(L"Introduction to SimaPro 7");

BSTR ProcessProject = ::SysAllocString(L"BUWAL250");

BSTR Process = ::SysAllocString(L"PVC B250");

BSTR MethodLib = ::SysAllocString(L"Methods");

BSTR Method = ::SysAllocString(L"Eco-indicator 99 (H)");

BSTR NWSet = ::SysAllocString(L"Europe EI 99 H/A");

TCOMISimaProServer SimaPro = CoSimaProServer::Create();

SimaPro->Server = Server;

SimaPro->Alias = Alias;

SimaPro->Database = Database;

SimaPro->OpenDatabase();

SimaPro->Login (User, L"");

SimaPro->OpenProject (Project, L"");

if (SimaPro->Analyse(ProcessProject, ptMaterial, Process,

MethodLib, Method, NWSet))

{

Memo1->Lines->Add("Single score = ");

Memo1->Lines->Add(FloatToStr(SimaPro->AnalyseResult(rtSingleScore, 0)->Amount));

}

::SysFreeString(Server);

::SysFreeString(Alias);

::SysFreeString(Database);

::SysFreeString(User);

::SysFreeString(Project);

::SysFreeString(ProcessProject);

::SysFreeString(Process);

::SysFreeString(MethodLib);

::SysFreeString(Method);

::SysFreeString(NWSet);

4.5 VB.NET Sample
This example will create webpage with a list of all processes in a database and create a new process with a

given name. Create a website or aspx page in Visual Studio with:

1 Label

2 Buttons

1 Textbox

1 GridView

And use the following code:
using System;

using System.Data;

using System.Collections;

using System.Configuration;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using SimaPro;

mailto:nexusdb@192.168.1.220

7

Programming the SimaPro COM Interface

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

public partial class _Default : System.Web.UI.Page

{

protected void Page_Load(object sender, EventArgs e)

{

}

protected void Button1_Click(object sender, EventArgs e)

{

SimaProServer SP = new SimaPro.SimaProServer();

SimaPro.Process PC;

SP.Server = "nexusdb@192.168.1.220";

SP.Alias = "Default";

SP.Database = "Professional";

SP.OpenDatabase();

SP.Login("Manager", "");

SP.OpenProject("Introduction to SimaPro 7", "");

SP.CreateProcess(TProcessType.ptMaterial, out PC);

ProcessLine PL = PC.AddLine(TProcessPart.ppProducts, -1);

PL.ObjectName = TextBox1.Text;

PL.UnitName = "kg";

PL.Amount = "2";

PL.Comment.Add("My new created process");

PC.Update();

SP.Logout();

SP.CloseDatabase();

Label1.Text = TextBox1.Text + " is created";

}

protected void Button2_Click(object sender, EventArgs e)

{

ArrayList AL = new ArrayList();

SimaProServer SP = new SimaPro.SimaProServer();

SimaPro.Process PC;

SP.Server = "nexusdb@192.168.1.220";

SP.Alias = "Default";

SP.Database = "Professional";

SP.OpenDatabase();

SP.Login("Manager", "");

SP.OpenProject("Introduction to SimaPro 7", "");

for(int I = 0; I < SP.ProductCount; I++)

{

AL.Add(SP.get_ProductName(I));

};

GridView1.DataSource = AL;

GridView1.DataBind();

SP.Logout();

SP.CloseDatabase();

Label1.Text = TextBox1.Text + " list done";

}

}

mailto:nexusdb@192.168.1.220
mailto:nexusdb@192.168.1.220

8

Programming the SimaPro COM Interface

4.6 C# Samples
4.6.1 Calculation example
In Visual Studio, this example creates a console application. You need to reference the SimaPro Library.

Go to the Solution Explorer and add Reference. Choose the COM tab and select ‘SimaPro Library’

(Version 2.0).

Paste these code snippets into the Main method. Change the server name, alias and database to your

own situation. If opening the database in single user mode, be sure to use double ‘\\’ in the alias,

otherwise it will be handled as an escape character.

using System;

using SimaPro;

namespace ConsoleApplication

{

class Program

{

static void Main(string[] args)

{

// Declare objects and strings to identify them

SimaProServer SP;

Process PCassembly;

Process PCmaterial;

ProcessLine PLassemblyName;

ProcessLine PLassemblyMaterial;

ProcessLine PLmaterialProperties;

string assembly = "New Assembly";

string material = "Steel";

string project = "Introduction to SimaPro 7";

Console.WriteLine("Started app");

// Open database and project

SP = new SimaProServer();

SP.Server = "local server"; // "nexusdb@192.168.1.113" if multi user

SP.Alias = "C:\\Users\\Public\\Documents\\SimaPro\\database" // "Default" if multi user
SP.Database = "Professional";

SP.OpenDatabase();

SP.Login("Manager", ""); // values ignored for single user

SP.OpenProject(project, "");

Console.WriteLine("Opened database and project");

mailto:nexusdb@192.168.1.113

9

Programming the SimaPro COM Interface

// Test if assembly already exists

if (SP.FindProcess(project, TProcessType.ptAssembly, assembly, out PCassembly))

{

Console.WriteLine("Assembly already exists");

PCassembly.Delete();

Console.WriteLine("Assembly deleted");

}

// Test if material already exists

if (!SP.FindProcess(project, TProcessType.ptMaterial, material, out PCmaterial))

{

// Create material

SP.CreateProcess(TProcessType.ptMaterial, out PCmaterial);

Console.WriteLine("Created material process");

PLmaterialProperties = PCmaterial.AddLine(TProcessPart.ppProducts, -1);

PLmaterialProperties.ObjectName = material;

PLmaterialProperties.UnitName = "kg";

PLmaterialProperties.Amount = "2";

PLmaterialProperties.Comment.Add("My newly created process");

PCmaterial.Update();

Console.WriteLine("New material process committed");

}

else

{

Console.WriteLine("Material " + material + " already exists");

 }

// Create new process object of type Assembly

SP.CreateProcess(TProcessType.ptAssembly, out PCassembly);

Console.WriteLine("Created process");

// Get process line of type ‘Product’ from the new Assembly object.

// For product-stage processes, this line is created automatically.

// This line is needed to set the name, comments and category path.

PLassemblyName = PCassembly.get_Line(TProcessPart.ppProducts, 0);

// Set properties of process line

PLassemblyName.ObjectName = assembly;

PLassemblyName.Comment.Add("My newly created assembly");

PLassemblyName.CategoryPath = "COM demonstration\\C# test";

Console.WriteLine("Created assembly");

// add material to assembly

PLassemblyMaterial = PCassembly.AddLine(TProcessPart.ppAssembliesAndMaterials, -1);

PLassemblyMaterial.SetProduct(project, TProcessType.ptMaterial, material);

PLassemblyMaterial.Amount = "2";

PLassemblyMaterial.UnitName = "kg";

Console.WriteLine("New material line added to assembly");

PCassembly.Update();

Console.WriteLine("New assembly committed");

// Logout and close database

SP.Logout();

SP.CloseDatabase();

SP = null;

Console.WriteLine("Press <Enter> to continue...");

Console.ReadLine();

}

}

}

This code creates a new assembly and material processes and attaches them in the project. If the

assembly already exists, it is deleted and then recreated.

10

Programming the SimaPro COM Interface

4.6.2 Activation Methods
With the COM interface you can take care of registration and activation of your SimaPro license. See the

reference to find out which methods and properties exist on the SimaPro server object. Below you find

a routine that tries to register and automatically activate a license.

/// <summary>

/// Handles the Click event of the ButtonRegister control.

/// Will check if current installation is not registered. If so, will

/// register a license.

/// </summary>

/// <param name="sender">The source of the event.</param>

/// <param name="e">The <see cref="System.Windows.RoutedEventArgs"/> instance containing

/// the event data.</param>

private void ButtonRegister_Click(object sender, EventArgs e)

{

var SP1 = new SimaProServer();

var registered = false;

switch (SP1.LicenseStatus(TSoftwareProduct.spSimaPro))

{

case TLicenseStatus.lsActivatedWithService:

case TLicenseStatus.lsActivatedNoService:

textBox1.Text += "Error: RegisterLicense called while already activated!:\r\n";

break;

case TLicenseStatus.lsRegistered:

textBox1.Text += "Error: RegisterLicense called while already registered!:\r\n";

break;

case TLicenseStatus.lsNoLicense:

{

try

{

var LicenseCode = "ChoAAFiDGeCp0IESAAAA#" + "\r\n" +

"rQWXIXBVh0B3gqJ3Bd3AwI1MUZQEp7ZDfl3M64rHKuby5CATre" + "\r\n" +

"O+++guSjOi4rqh0qSk4hePsgXY3eOm5921zijg5AH1pEwRVYao" + "\r\n" +

"w4QPvjHGR3kk7aAqqqqmXp1Qj9zws31oeZKnxIlDaMJZ60keOb" + "\r\n" +

"VD/qwaHBiVWN6mHkTHEwQ=";

var RegistrationName = "Mickey Mouse";

registered = (SP1.RegisterLicense(LicenseCode, RegistrationName) ==

TLicenseStatus.lsRegistered);

textBox1.Text += "DoRegister returned: " + registered;

}

catch (Exception u)

{

}

}

break;

}

}

textBox1.Text += "RegisterLicense error: " + u.Message + "\r\n";

return;

11

Programming the SimaPro COM Interface

/// <summary>

/// Handles the Click event of the ButtonActivateAuto control.

/// Will check if current installation is not activated. If so, will

/// activate current license.

/// </summary>

/// <param name="sender">The source of the event.</param>

/// <param name="e">The <see cref="System.Windows.RoutedEventArgs"/> instance containing

/// the event data.</param>

private void ButtonActivateAuto_Click(object sender, EventArgs e)

{

var SP1 = new SimaProServer();

var activated = false;

switch (SP1.LicenseStatus(TSoftwareProduct.spSimaPro))

{

case TLicenseStatus.lsActivatedNoService:

case TLicenseStatus.lsActivatedWithService:

textBox1.Text = "Activation error: " + " already Activated" + "\r\n";

break;

case TLicenseStatus.lsRegistered:

{

try

{

activated = (SP1.ActivateAuto() == TLicenseStatus.lsActivated); textBox1.Text =

"Activation: " + activated;

}

catch (Exception u)

{

textBox1.Text = "Activation error: " + u.Message + "\r\n";

}

}

break;

}

}

5 Reference
5.1 Core functions/properties
These functions and properties return an error if you do not have an active SimaPro Developer license

with COM option.

5.1.1 Amount Property

5.1.2 Cancel Method

Object Method description

ProcessLine Amount or percentage of product or substance

SimaProAnalyseResult Amount of units substance or impact assessment score

SimaProNetworkResult Amount of the product

SimaProTreeResult Amount of the product

Object Method description

Process Cancel edit mode and returns to read mode

Substance Cancel edit mode and returns to read mode

12

Programming the SimaPro COM Interface

5.1.3 Comment Property

5.1.4 Distribution Property

5.1.5 Edit Method

5.1.6 LineNumber Property

5.1.7 MainCompartmentName Property

5.1.8 Maximum Property

Object Property description

ParamLine Comment of the parameter

Process Comment of the process

ProcessLine Comment

Substance Comment

Object Property description

ParamLine Distribution of the input parameter

ProcessLine Distribution of amount

Object Method description

Process Set the object in edit mode

Substance Set the object in edit mode

Object Property description

ParamLine Index in the section of the process to which the ProcessLine

object belongs ProcessLine

ParamLine Index in the section of the process to which the ProcessLine

object belongs ProcessLine

Object Property description

SimaProAnalyseResult

SimaProServer Name of a main-compartment

Object Property description

ParamLine Maximum value of the input parameter

ProcessLine Maximum value of amount

13

Programming the SimaPro COM Interface

5.1.9 Minimum Property

5.1.10 Mode Property

5.1.11 Name Property

5.1.12 ParamLine
Class ParamLine

Represents one parameter in SimaPro

ParamLine.Comment Property Comment As IStrings

Comment of the parameter

Example

Add comment to a parameter
ParamLine1.Comment.add('estimated value')

ParamLine.Distribution

Property Distribution As TDistribution

Distribution of the input parameter

Example

Set the distribtion to normal

Param1.Distribution := distNormal

ParamLine.Expression

Property Expression As String

Expression of the calculated parameter

Member of ParamLine

Object Property description

ParamLine Minium value of the input parameter

ProcessLine Minimum value of amount

Object Property description

Process Mode of the object, can be: Read, New or Edit

Substance Mode of the object, can be: Read, New or Edit

Object Property description

ParamLine Name of the parameter

Substance Name of the substance (e.g. 'Carbon dioxide')

14

Programming the SimaPro COM Interface

Example
B is A + 1

Param1.Name = 'B'

param1.ParameterType = ptCalculatedParameter

Param1.Expression = 'A+1'

ParamLine.Hide

Property Hide As Boolean

Only locally visible in process

ParamLine.LineNumber

Property LineNumber As

Integer

Index in the section of the process to which the ProcessLine object belongs

Member of ParamLine

Read-Only

ParamLine.Maximum

Property Maximum As Double

Maximum value of the input parameter

Member of ParamLine

ParamLine.Minimum

Property Minimum As Double

Minium value of the input parameter

Member of ParamLine

ParamLine.Name

Property Name As String

Name of the parameter

Member of ParamLine

Example
B is A + 1

Param1.Name = 'B'

param1.ParameterType = ptCalculatedParameter

Param1.Expression = 'A+1'

ParamLine.ParameterType

Property ParameterType As TParameterType

Section in the process to which the ProcessLine object

belongs Read-Only

Example
B is A + 1

15

Programming the SimaPro COM Interface

Param1.Name = 'B'

param1.ParameterType = ptCalculatedParameter

Param1.Expression = 'A+1'

ParamLine.Process

Property Process As Process

Process to which the ParamLine object belongs Read-Only

Can be used to trace the process properties.

ParamLine.StandardDeviation

Property StandardDeviation As Double

Standard deviation of the input parameter

ParamLine.Value

Property Value As Double

Value of the input parameter
Member of ParamLine

Example
Set A to 13
if Process.FindParameter('a', Param) then

Param.Edit

else

Param = Process.AddParamLine(ptInputParameter, -1)

Param.Name = 'a'

Param.Value = 13

Param.Update

5.1.13 Process
Class Process

Objects comprising inputs and outputs that model the environmental impact of real world activities.

Process.AddLine

Function AddLine(ByVal Part As TProcessPart, ByVal LineNumber As Integer) As

ProcessLine Add a line and returns a ProcessLine object

Member of Process

Return value

Returns ProcessLine

Example

Add emission and product to a process

Parameters Description

Part Part within process (ppProducts, ppMaterialsFuels etc)

LineNumber Linenumber (zero based) -1 means: at the end

16

Programming the SimaPro COM Interface

Line := MyProcess.AddLine(ppEmissionsWater, -1);

Line.SetSubstance('Carbon dioxide', 'Air');

Line.Amount := '34';

Line.UnitName := 'g';

Line := MyProcess.AddLine(ppProduct, -1);

Line.ObjectName :='My product name',

Line.Amount := '1';

Line.UnitName := 'kg';

Line.WasteType := 'Steel';

See also the example at SimaProServer.CreateProcess

Process.AddParamLine

Function AddParamLine(ByVal ParameterType As TParameterType, ByVal LineNumber As Integer)

As ParamLine Add a line and returns a ParamLine object

Member of Process

Return value

Returns ParamLine

Example

Set A to 13

if NOT Process.FindParameter('a', Param) then

begin

Param = Process.AddParamLine(ptInputParameter, -1);

Param.Name = 'a' ;

end;

Param.Value = 13

Process.Cancel

Sub Cancel()

Cancel edit mode and returns to read mode

Example
Undo all edits

ProcessLine := Process.AddLine(ppProcesses, -1);

Process.cancel;

Process.Comment

Property Comment As IStrings

Comment of the process

Example

Set the comment

Parameters Description

ParameterType Type

LineNumber LineNumber, -1 adds at end

17

Programming the SimaPro COM Interface

process.comment.add('changed by Joe');

Process.Delete

Sub Delete()

Remove a process from the database. An exception error is raised if process has already been deleted or

it is being used as a sub-process.

Example
PC.Delete

Process.DeleteLine

Sub DeleteLine(ByVal Part As TProcessPart, ByVal LineNumber As

Integer) Delete a line

Example
Delete first product

Process.DeleteLine(ppProducts, 0)

Process.DeleteParamLine

Sub DeleteParamLine(ByVal ParameterType As TParameterType, ByVal

LineNumber As Integer) Delete a parameter line

Example

Delete second calculated parameter

Pc.deleteParamLine(ptCalculatedParame

ter, 1)

Process.Edit

Sub Edit()

Set the object in edit mode

Example

Change the waste type of 'Steel NL' to 'Steel'

If SimaPro.FindProcess('Sample project', ptMaterial, 'steel', pc) then

pc.Edit;

try

// change waste type of first product

pc.processline[ppProduct, 0].WasteType := 'Steel';

pc.Update;

except

pc.Cancel;

Parameters Description

Part Which part of the process

LineNumber Which line within part (Zero based)

Parameters Description

ParameterType Type of parameter

LineNumber Linenumber (zero based)

18

Programming the SimaPro COM Interface

end;

Process.FindParameter

Function FindParameter(ByVal Name As String, ByRef ParamLine As ParamLine) As Boolean

Find a line and returns a ParamLine object

Return value

Returns Boolean

Example

Set A to 13

if Process.FindParameter('a', Param) then

Param.Edit

else

Param = Process.AddParamLine(ptInputParameter, -1)

Param.Name = 'a'

Param.Value = 13

Param.Update

Process.Line

Property Line(ByVal Part As TProcessPart, ByVal LineNumber As Integer) As

ProcessLine Returns a ProcessLine object

Read-Only

Example

Delete the emissions to air of Carbon Dioxde.

Pc := SimaPro.FindProcess(ptMaterial, 'steel');

Pc.Edit;

I := 0;

while I < PC.LineCount[ppEmissionsAir] do

begin

if Pc.Line[ppEmissionsAir, I].ObjectName2 = 'Carbon Dioxide, biogenic' then

Pc.DeleteLine(ppEmissionsAir, I)

else

Inc(I);

end;

Pc.Update;

Process.LineCount

Property LineCount(ByVal Part As TProcessPart) As

Integer Number of lines in a part

Read-Only

Parameters Description

Name Name of Parameter

ParamLine Result

Parameters Description

Part Part within process (ppProducts, ppMaterialsFuels etc)

LineNumber Linenumber (zero based)

19

Programming the SimaPro COM Interface

if SimaPro.FindProcess('Sample project', ptMaterial, 'steel', pc) then

begin

Pc.Edit;

I := PC.LineCount[ppEmissionsAir] - 1;

while I >= 0 do

begin

s := pc.Line[ppEmissionsAir, I].ObjectName2;

if Pc.Line[ppEmissionsAir, I].ObjectName2 = 'Carbon Dioxide, biogenic' then

Pc.DeleteLine[ppEmissionsAir, I]

else

Dec(I);

end;

Pc.Update;

end;

Process.Mode

Property Mode As String

Mode of the object, can be: Read, New

or Edit Read-Only

Process.ParamLine

Property ParamLine(ByVal ParameterType As TParameterType, ByVal LineNumber As Integer) As

ParamLine Returns a ParamLine object

Read-Only

Process.ParamLineCount

Property ParamLineCount(ByVal ParameterType As TParameterType)

As Integer Number of parameters

Member of Process
Read-Only

Process.ProcessType

Property ProcessType As

TProcessType Type of the process

Read-Only

Process.ProjectName

Property ProjectName As String

Parameters Description

Part Products etc

Parameters Description

ParameterType ptInputParameter,

LineNumber Linenumber where you want to insert. -1 inserts at end

Parameters Description

ParameterType ptInputParameter or ptCalculatedParameter

20

Programming the SimaPro COM Interface

Name of the project to which the process belongs

Read-Only

Process.Status

Property Status As TProcessStatus

Status of the process

Example

Set status to draft

Pc.Status := stDraft;

Process.Update

Sub Update()

Store the data of the object in the database and switch to read mode

Example

Change the waste type of 'Steel NL' to 'Steel'

pc := SimaPro.FindProcess(ptmaterial, 'Steel NL');

pc.Edit;

try

// change waste type of first product

pc.processline[ppProduct, 0].WasteType := 'Steel';

pc.Update;

except

pc.Cancel;

end;

5.1.14 ProcessLine
Class ProcessLine

A line in a process as seen on screen in SimaPro. Can be either products, inputs or outputs.

ProcessLine.Allocation

Property Allocation As

String

Allocation percentage of a product

ProcessLine.Amount

Property Amount As

String

Amount or percentage of product or substance

Member of ProcessLine

Example
Line.SetProduct('eco invent unit processes', ptEnergy, 'Electricity UCTPE');

Line.Amount := '10';

Line.UnitName := 'kWh';

See also the example at SimaProServer.CreateProcess

21

Programming the SimaPro COM Interface

ProcessLine.CategoryPath

Property CategoryPath As String

Category path of a product

Example

Change the category

AProcessLine.Category := '\others\chemicals';

ProcessLine.Comment

Property Comment As IStrings

Comment

Member of ProcessLine

ProcessLine.Distribution

Property Distribution As TDistribution

Distribution of amount

ProcessLine.LineNumber

Property LineNumber As Integer

Index in the section of the process to which the ProcessLine object belongs

Read-Only

ProcessLine.Maximum

Property Maximum As Double

Maximum value of amount

ProcessLine.Minimum

Property Minimum As Double

Minimum value of amount

ProcessLine.ObjectName

Property ObjectName As String

Name of the product

See the example at SimaProServer.CreateProcess

ProcessLine.ObjectName2 Property

ObjectName2 As String

Sub-compartment or material name
Member of ProcessLine
Read-Only

ProcessLine.Part

Property Part As TProcessPart

Section in the process to which the ProcessLine object belongs

22

Programming the SimaPro COM Interface

Read-Only

ProcessLine.Process

Property Process As Process

Process to which the ProcessLine object belongs

Read-Only

ProcessLine.ProcessType

Property ProcessType As TProcessType

Type of the product

Read-Only

ProcessLine.ProjectName

Property ProjectName As String

Name of the project to which the product belongs

Read-Only

ProcessLine.ProjectName2

Property ProjectName2 As String

Name of the project to which the material belongs

Read-Only

ProcessLine.SetMaterial

Sub SetMaterial(ByVal ProjectName As String, ByVal ProductName As String)

Select a material and link it to the process; only for waste treament product and specific waste flow

Member of ProcessLine

Only for advanced disposal modelling. Use SetProduct to link inputs from technosphere.

Example

PC.SetMaterial('My project', 'Steel');

ProcessLine.SetProduct

Sub SetProduct(ByVal ProjectName As String, ByVal ProcessType As TProcessType, ByVal

ProductName As String) Select a product of process as an input and link it to the process

Parameters Description

ProjectName Name of project (see SimaproServer.Projects)

ProductName Name of product

23

Programming the SimaPro COM Interface

Link inputs from technosphere.

Example

Line.SetProduct('eco invent unit processes', ptEnergy, 'Electricity UCTPE');

Line.Amount := '10';

Line.UnitName := 'kWh';

ProcessLine.SetSubstance

Sub SetSubstance(ByVal SubstanceName As String, ByVal SubCompartmentName As String)

Select a substance and link it to the process

Use this to define the emissions and raw material use of a process

Example

Line.SetSubstance('Carbon dioxide', 'Air')

Line.Amount := '11.4';

Line.UnitName := 'kg';

Pc.Update;

ProcessLine.StandardDeviation

Property StandardDeviation As Double

Standard deviation of amount

ProcessLine.UnitName

Property UnitName As String

Name of the unit of amount

Example

Line.SetProduct('eco invent unit processes', ptEnergy, 'Electricity UCTPE');

Line.Amount := '10';

Line.UnitName := 'kWh';

See also the example at SimaProServer.CreateProcess

ProcessLine.WasteType

Property WasteType As String

Waste type of a product or specific waste flow

Parameters Description

ProjectName Name of project

ProcessType

ProductName Name of the product

Parameters Description

SubstanceName Name as in the substance list

SubCompartmentName Name of the subcompartment

24

Programming the SimaPro COM Interface

5.1.15 Process Property
Select one of the available subtopics below to see detailed help on Process property

5.1.16 ProcessType Property
Select one of the available subtopics below to see detailed help on ProcessType property

5.1.17 ProductName Property
Select one of the available subtopics below to see detailed help on ProductName property

5.1.18 ProjectName Property
Select one of the available subtopics below to see detailed help on ProjectName property

5.1.19 SimaProAnalyseResult
Class SimaProAnalyseResult

Object containing substance list or impact assessment score resulting from the calculation of a process

object.

SimaProAnalyseResult.Amount

Property Amount As Double

Amount of units substance or impact assessment score

Example

See SimaProServer.Analyse

Object Property description

ParamLine Process to which the ParamLine object belongs

ProcessLine Process to which the ProcessLine object belongs

Object Property description

Process Type of the process

ProcessLine Type of the product

Object Property description

SimaProNetworkResult Name of the product

SimaProServer Name of a product

SimaProTreeResult Name of the product

Object Property description

Process Name of the project to which the process belongs

ProcessLine Name of the project to which the product belongs

25

Programming the SimaPro COM Interface

SimaProAnalyseResult.IndicatorName

Property IndicatorName As String

Name of substance, impact category etc. In case of single score it is empty

Example

See SimaProServer.Analyse

SimaProAnalyseResult.MainCompartmentName

Property MainCompartmentName As String

Only for inventory results

SimaProAnalyseResult.SubCompartmentName

Property SubCompartmentName As String

Only for inventory results

SimaProAnalyseResult.UnitName

Property UnitName As String

Unit (e.g. kg, m3)

Example

See SimaProServer.Analyse

5.1.20 SimaProCalculationError
Class SimaProCalculationError

Object containing error details resulting from the calculation of a process object.

SimaProCalculationError.AdditionalInfo

Property AdditionalInfo As String

SimaProCalculationError.ErrorCode

Property ErrorCode As Integer

Number of the error

SimaProCalculationError.ErrorDescription

Property ErrorDescription As String

Description of the error

26

Programming the SimaPro COM Interface

5.1.21 SimaProNetworkResult
Class SimaProNetworkResult

Object containing network flows resulting from the calculation of a process object.

SimaProNetworkResult.Amount

Property Amount As Double

Amount of the product

SimaProNetworkResult.ChildProductName

Property ChildProductName As String

Name of the child-product

SimaProNetworkResult.ProductName

Property ProductName As String

Name of the product

SimaProNetworkResult.UnitName

Property UnitName As String

Unit of the amount

Member of SimaProNetworkResult

5.1.22 SimaProServer
Class SimaProServer

Object handling connection to database and functions applied to collections of process objects.

SimaProServer.AddParamLine

Function AddParamLine(ByVal ParameterType As TParameterType, ByVal ParameterScope As

TParameterScope, ByVal LineNumber As Long) As ParamLine

Add a project or database parameter line and returns a ParamLine object

ParameterScope psDatabase or psProject. psProject means currently open project

Return value

Returns ParamLine. If no project is open an exception is raised.

Parameters Description

ParameterType Type of parameter: Input or calculated

LineNumber LineNumber, -1 adds at end

27

Programming the SimaPro COM Interface

Example

Set project parameter A to 13

Param = SimaProServer.FindParameter('OptionA', psDatabase)

if Param is nothing then

begin

Param = SimaProServer.AddParamLine(ptInputParameter, psDatabase, -1)

Param.Name = 'OptionA'

Param.Value = 13

End

SimaProServer.Alias

Property Alias As String

Currently used alias

See the example at SimaProServer.CreateProcess

SimaProServer.Aliases

Property Aliases As IStrings

List of available aliases, set Server first

Member of SimaProServer

Read-Only

SimaProServer.Analyse

Function Analyse(ByVal ProjectName As String, ByVal ProcessType As TProcessType, ByVal

ProductName As String, ByVal MethodProjectName As String, ByVal MethodName As String, ByVal

NWSetName As String) As Boolean

Perform the analyse function for a process or product stage

Member of SimaProServer

Return value

Returns Boolean

Example

Show the inventory

SP.Analyse('My project', ptMaterial, 'Steel', 'Methods', 'EI99', 'N/A');

// show inventory

for I := 0 to SP.ResultCount(rtInventory) - 1 do

begin

Parameters Description

ProjectName Name of project

ProcessType Type of process

ProductName Name of Product MethodProjectName

NWSetName Normalisation Weighting set.

ProjectName Name of project

ProcessType Type of process

28

Programming the SimaPro COM Interface

Res := SP.AnalyseResult(rtInventory, I)

Print Res.Amount, Res.IndicatorName, Res.UnitName;
end;

SimaProServer.AnalyseResult

Function AnalyseResult(ByVal AnalyseResultType As TResultType, ByVal I As Integer)

As SimaProAnalyseResult Retrieve the result of the analyse function

Return value
Returns SimaProAnalyseResult

Example

See SimaProServer.Analyse

SimaProServer.AutoUpdate

Property AutoUpdate As Boolean

Member of SimaProServer

When a database change has occurred, all operations will throw an exception.

When this member has been set to true, a database conversion will occur, and operations can proceed.

SimaProServer.CalculationError

Function CalculationError(ByVal I As Integer) As SimaProCalculationError

Calculation error data

Return value

Returns SimaProCalculationError

SimaProServer.CalculationErrorCount

Property CalculationErrorCount As Integer

Number of calculation errors

Read-Only

SimaProServer.CloseDatabase

Sub CloseDatabase()

Close the currently open database

Parameters Description

AnalyseResultType rtCharacterisation, rtDamage, rtNormalisation, rtWeighting,

rtSingleScore or rtInventory

I Index

Parameters Description

I Index

29

Programming the SimaPro COM Interface

SimaProServer.CloseProject

Sub CloseProject()

Close the currently open project

SimaProServer.CreateProcess

Sub CreateProcess(ByVal ProcessType As TProcessType, ByRef Process As Process)

Creates a new process

Example
Create 2 processes and link to each other, then link to an assembly (VB)

Dim SP As SimaProServer

Dim PC As Process

Dim PC2 As Process

Dim PC3 as Process

Dim PL As ProcessLine

Set SP = New SimaProServer

SP.Server = "nexusdb@192.168.2.113"

SP.Alias = "Default"

SP.Database = "Professional"

SP.OpenDatabase

SP.Login "Manager", ""

SP.OpenProject "A COM DEMO", ""

SP.CreateProcess ptMaterial, PC

Set PL = PC.AddLine(ppProducts, -1)

PL.ObjectName = "Steel"

PL.UnitName = "kg"

PL.Amount = "2"

PL.Comment.Add ("My new created process")

PC.Update

' create second material process Case

SP.CreateProcess ptMaterial, PC2

Set PL = PC2.AddLine(ppProducts, 0)

PL.ObjectName = "Case"

PL.UnitName = "kg"

PL.Amount = "10"

' add input from Steel

Set PL = PC2.AddLine(ppMaterialsFuels, -1)

' input from steel

PL.SetProduct "A COM DEMO", ptMaterial, "Steel"

PL.Amount = "8"

PL.UnitName = "kg"

PC2.Update

' create Assembly product stage

SP.CreateProcess ptAssembly, PC3

Set PL = PC3.get_Line(ppProducts, 0)

PL.ObjectName = "New Assembly"

PL.Comment.Add ("My newly created assembly")

PL.CategoryPath = "COM demonstration\Create process test"

' add Case material to assembly

Set PL = PC3.AddLine(ppAssembliesAndMaterials, -1)

PL.SetProduct "A COM DEMO", ptMaterial, "Case"

PL.Amount = "2"

PL.UnitName = "kg"

PC3.Update

Parameters Description

ProcessType ProcessType (ptMaterial, ptEnergy, etc)

Process Resulting process object

mailto:nexusdb@192.168.2.113

30

Programming the SimaPro COM Interface

SP.Logout

SP.CloseDatabase

Set SP = Nothing

SimaProServer.CreateSubstance

Sub CreateSubstance(ByVal MainCompartment As String, ByRef Substance As Substance)

Create a new substance

Example

Create a new substance

SimaPro.CreateSubstance('Air', Substance)

Substance.Name := 'My new substance'

Substance.UnitName := 'kg';

Substance.Update; // save in database

SimaProServer.CurrentProject

Property CurrentProject As String

Name of the currently open project

Read-Only

SimaProServer.CurrentUser

Property CurrentUser As String

Name of the user that is currently logged in

Read-Only

SimaProServer.Database

Property Database As String

Currently used database, see OpenDatabase

See the example at SimaProServer.CreateProcess

SimaProServer.DatabaseOpen

Property DatabaseOpen As Boolean

Indicates if a database is currently open
Read-Only

SimaProServer.Databases

Property Databases As IStrings

List of available databases, set Server and Alias first

Read-Only

SimaProServer.DeleteParamLine

Sub DeleteParamLine(ByVal ParameterType As TParameterType, ByVal ParameterScope As

Parameters Description

MainCompartment MainCompartment goes here ('Air', 'Water', 'Soil', etc)

Substance Resulting substance object

31

Programming the SimaPro COM Interface

TParameterScope, ByVal LineNumber As Long)

Deletes a parameter from database or the current

project Member of SimaProServer

SimaProServer.FindParameter

Function FindParameter(ByVal Name As String, ByVal ParameterScope As TParameterScope) As ParamLine

Finds a parameter in the database or current open project

Return value
Returns ParamLine if found

SimaProServer.FindProcess

Function FindProcess(ByVal ProjectName As String, ByVal ProcessType As TProcessType, ByVal ProductName

As String, ByRef Process As Process) As Boolean

Looks for a process in the project and libraries

ProductName Name

Process Result object

Return value

Returns Boolean

Example

Remove lines from process
if SimaPro.FindProcess('Sample project', ptMaterial, 'steel', pc) then

begin

Pc.Edit;

I := PC.LineCount[ppEmissionsAir] -1 ;

while I > 0 do

begin

s := pc.Line[ppEmissionsAir, I].ObjectName2;

if Pc.Line[ppEmissionsAir, I].ObjectName2 = 'Carbon Dioxide, biogenic' then

Pc.DeleteLine[ppEmissionsAir, I]

else

Parameters Description

ParameterType Type of parameter (input or calculated)

ParameterScope Scope of parameter (project or database)

LineNumber Linenumber

Parameters Description

Name Name of parameter

ParameterScope Scope of parameter (project or database

Parameters Description

ProjectName Name of project

ProcessType Type of process

32

Programming the SimaPro COM Interface

Dec(I);

end;

Pc.Update;

end;

SimaProServer.FindProcessEx

Function FindProcessEx(ByVal ProjectName As String, ByVal ProcessType As TProcessType, ByVal

ProductName As String) As Process

FindProcess version that returns a Process

Return value
Returns Process

Same as FindProcess but returns a process object. Useful in Java, which does not support passing

parameters by reference, or if you prefer this style of programming.

SimaProServer.FindSubstance

Function FindSubstance(ByVal MainCompartmentName As String, ByVal SubstanceName As String, ByRef

Substance As Substance) As Boolean

Find a substance in the database

Return value

Returns Boolean

Example

Read CO2 CAS Number

PC.FindSubstance('Air', 'Carbon dioxide', Substance);

Print Substance.CASNumber;

You can also use

PC.SubstanceCASnumber('Air', 'Carbon dioxide')

SimaProServer.LoggedIn

Property LoggedIn As Boolean

Parameters Description

ProjectName Name of project

ProcessType Type of process

ProductName Name

Parameters Description

MainCompartmentName ‘Water’, ‘Air’, etc

SubstanceName Required substancename

Substance Substance object

33

Programming the SimaPro COM Interface

Indicates if a user is currently logged in
Member of SimaProServer

Read-Only

SimaProServer.Login

Function Login(ByVal UserName As String, ByVal Password As String) As Boolean

Log in the database, not needed for single user if manager-password = empty

Return value
Returns Boolean

See the example at SimaProServer.CreateProcess

SimaProServer.Logout

Function Logout() As Boolean

Log out from the database

Return value

Returns Boolean

See also the example at SimaProServer.CreateProcess

SimaProServer.MainCompartmentCount

Property MainCompartmentCount As Integer

Number of main-compartments

Read-Only

Example

List the maincompartments

for I := 0 to SP.MainCompartmentCount - 1 do

print SP.MainCompartmentName(i)

SimaProServer.MainCompartmentName

Property MainCompartmentName(ByVal I As Integer) As String

Name of a main-compartment

Read-Only

Example

Parameters Description

UserName Name of user

Password Password

Parameters Description

I Index

34

Programming the SimaPro COM Interface

See SimaProServer.MainCompartmentCount

SimaProServer.MethodCount

Property MethodCount As Integer

Number of impact assessment methods in the currently open project and selected libraries

Read-Only

SimaProServer.MethodName

Property MethodName(ByVal I As Integer) As String

Name of an impact assessment method

Read-Only

SimaProServer.MethodProjectName

Property MethodProjectName(ByVal I As Integer) As String

Name of the project of an impact assessment method

Read-Only

SimaProServer.Network

Function Network(ByVal ProjectName As String, ByVal ProcessType As TProcessType, ByVal

ProductName As String, ByVal MethodProjectName As String, ByVal MethodName As String, ByVal

NWSetName As String) As Boolean

Perform the network function for a process or product stage

Return value

Returns Boolean

Example

Calculate a network and fetch the results of the top node

if SP.Network('My project', 'ptEnergy', 'Electricity', 'Methods', 'ei99', 'N/A') then

Parameters Description

I Index

Parameters Description

I Index

Parameters Description

ProjectName Name of project

ProcessType ProcessType (ptMaterial, ptEnergy, etc)

ProductName Name of Product

MethodProjectName Project where methods are stored (often 'Methods')

MethodName name of the Method

NWSetName Normalisation Weighting set.

35

Programming the SimaPro COM Interface

begin

SP.NetworkCalcScore(rtIndicator, '', '', '');

for I := 0 to SimaPro.NetworkChildNodeCount[SimaPro.NetWorkTopNodeIndex] - 1 do

begin

Res := SP.NetworkResult(nrProductAmount,

SP.NetworkChildNodeIndex(SimaPro.NetWorkTopNodeIndex, i), 0);

print Res.ProductName, Res.Amount, Res.UnitName;

end;

end;

SimaProServer.NetworkCalcScore

Function NetworkCalcScore(ByVal ResultType As TResultType, ByVal Param1 As String, ByVal Param2 As

String, ByVal Param3 As String) As Boolean

Calculates the node and flow scores of a network.

You can perform multiple NetworkCalcScores calcualations on an existing Network.

Return value
Returns Boolean

Example

See SimaProServer.Network

SimaProServer.NetworkChildNodeCount

Property NetworkChildNodeCount(ByVal NodeIndex As Integer) As Integer

Number of child nodes of a network node

Read-Only

All nodes are indexed. This function return the number of children of a certain node.

Example

See SimaProServer.Network

SimaProServer.NetworkChildNodeIndex

Property NetworkChildNodeIndex(ByVal NodeIndex As Integer, ByVal FlowIndex As Integer) As Integer

Parameters Description

ResultType Param1 Param2 Param3

rtCharacterisation Impact Category - -

rtDamage Damage Category - -

rtNormalisation Damage Category or Impact

Category

- -

rtWeighting Damage Category or impact

Category

- -

rtSingleScore - - -

rtInventory MainCompartment Subcompartment SubstanceName

Parameters Description

NodeIndex Index of the node

36

Programming the SimaPro COM Interface

Index of a child node of a network node

Read-Only

Points to a node, for example get the productname with NetworkProductName

SimaProServer.NetworkNodeCount

Property NetworkNodeCount As Integer

Number of nodes in the network

Read-Only

SimaProServer.NetworkProductName

Property NetworkProductName(ByVal NodeIndex As Integer) As String

Product name of a network node

Read-Only

SimaProServer.NetworkResult

Function NetworkResult(ByVal NodeResultType As TNodeResultType, ByVal NodeIndex As Integer, ByVal

FlowIndex As Integer) As SimaProNetworkResult

Retrieve the data of a network node

Return value

Returns SimaProNetworkResult

Example
See SimaProServer.Network

SimaProServer.NetworkTopNodeIndex

Property NetworkTopNodeIndex As

Integer Index of the top node of the

Parameters Description

NodeIndex Node

FlowIndex Flow of that node

Parameters Description

NodeIndex Node

Parameters Description

NodeResultType nrProductAmount, nrIndicatorContribution, nrIndicatorTotal,

nrFlowIndicator

NodeIndex Node index see NetworkNodeCount

FlowIndex Flow index (per node) See NetworkChildNodeCount

37

Programming the SimaPro COM Interface

network

Read-Only

Example

See SimaProServer.Network

SimaProServer.NWSets

Property NWSets(ByVal ProjectName As String, ByVal MethodName As String) As IStrings

List of normalisation-weighting sets in a method

Read-Only

Example

Show the first NWSet
Print SP.NWSets('methods', 'ecoindicator 99')[0]

SimaProServer.OpenDatabase

Sub OpenDatabase()

Open a database

Set Server, Alias and Database first
Example

SP.Server := 'local server';

SP.Alias := 'C:\DATA'

SP.Database := 'Professional';

SP.OpenDatabase;

See also the example at SimaProServer.CreateProcess

SimaProServer.OpenProject

Sub OpenProject(ByVal ProjectName As String, ByVal Password as String)

Open a project

Example

Open a project

SP.OpenProject('Introduction into LCA');

SimaProServer.ParamLine

Property ParamLine(ByVal ParameterType As TParameterType, ByVal ParameterScope As

TParameterScope, ByVal LineNumber As Long) As ParamLine

Parameters Description

ProjectName Name of Project

MethodName Name of Method

Parameters Description

ProjectName Project

Password Only needed if the project is protected

38

Programming the SimaPro COM Interface

Read-Only

See process.Paramline and Paramlinecount for an example.

SimaProServer.ParamLineCount

Property ParamLineCount(ByVal ParameterType As TParameterType, ByVal ParameterScope As

TParameterScope) As Long

Read-Only

For psProject a project must be open.

Returns number of parameters

See process.Paramline and Paramlinecount for an example.

SimaProServer.Product

Property Product(ByVal I As Long) As Process

Returns the process directly adressed by an index (see ProductCount)

Member of SimaProServer

Read-Only

Gives direct access to the product listed with productname.

SimaProServer.ProductCategoryPath

Property ProductCategoryPath(ByVal I As Long) As String

Returns the complete category adressed by an index

Read-Only

Parameters Description

ParameterType Type of parameter (input or calculated)

ParameterScope Scope of parameter (project or database)

LineNumber Linenumber (zerobase) must be less thatn ParamLineCount

Parameters Description

ParameterType Type of parameter (input or calculated)

ParameterScope Scope of parameter (psProject or psDatabase)

Parameters Description

I Index of product

Parameters Description

I Index of product

39

Programming the SimaPro COM Interface

SimaProServer.ProductCount

Property ProductCount As

Integer

Number of processes and product-stages in the currently open project and selected libraries

Read-Only

SimaProServer.ProductName

Property ProductName(ByVal I As Integer) As

String Name of a product

Read-Only

Used for listing data

SimaProServer.ProductProcessType

Property ProductProcessType(ByVal I As Integer) As TProcessType

Process type of a product

Read-Only

SimaProServer.ProductProcessTypeName

Property ProductProcessTypeName(ByVal I As Integer) As String

Description of the process type of a product

Read-Only

SimaProServer.ProductProjectName

Property ProductProjectName(ByVal I As Integer) As String

Name of the project of a product

Read-Only

SimaProServer.ProductUnitName

Property ProductUnitName (ByVal I As Integer) As String

Name of the project of a unit

Read-Only

Parameters Description

I Index of product

Parameters Description

I Index of product

Parameters Description

I Index of product

Parameters Description

I Index of product

Parameters Description

40

Programming the SimaPro COM Interface

SimaProServer.ProductQuantityName

Property ProductQuantityName (ByVal I As Integer) As String

Name of the project of a quantity

Read-Only

SimaProServer.ProjectOpen

Property ProjectOpen As Boolean

Indicates if a project is currently open

Read-Only

SimaProServer.Projects

Property Projects As IStrings

List of available projects, open database and log in first
Read-Only

SimaProServer.QuantityCount

Property QuantityCount As Integer

Number of quantities

Read-Only

SimaProServer.QuantityName

Property QuantityName(ByVal I As Integer) As String

Name of a quantity

Read-Only

Listing the quantities in the database.

SimaProServer.ResultCount

Property ResultCount(ByVal ResultType As TResultType) As

Integer Number of indicators

Read-Only

I Index of product

Parameters Description

I Index of product

Parameters Description

I Index of product

Parameters Description

ResultType rtCharacterisation etc

41

Programming the SimaPro COM Interface

SimaProServer.ResultIndicatorName

Property ResultIndicatorName(ByVal ResultType As TResultType, ByVal I As Integer) As String

Name of an indicator

Read-Only

SimaProServer.ResultMainCompartmentName

Property ResultMainCompartmentName(ByVal I As Integer) As String

Name of the main-compartment of a substance

Read-Only

SimaProServer.ResultSubCompartmentName

Property ResultSubCompartmentName(ByVal I As Integer) As String

Name of the sub-compartment of a substance

Read-Only

SimaProServer.SaveParameters

Sub SaveParameters()

Saving the changes in the parameters on database and project level

SimaProServer.Server

Property Server As String

Currently used server, e.g. 'local server' or 'myserver@w.p1.local'

SimaProServer.Servers

Property Servers As IStrings

List of available servers

Read-Only

SimaProServer.SubCompartmentCount

Property SubCompartmentCount(ByVal MainCompartmentName As String)

As Integer Number of sub-compartments

Read-Only

Parameters Description

ResultType rtCharacterisation etc

I Index

Parameters Description

I Index

Parameters Description

I Index

Parameters Description

MainCompartmentName Name of main compatment

mailto:%27myserver@w.p1.local

42

Programming the SimaPro COM Interface

SimaProServer.SubCompartmentName

Property SubCompartmentName(ByVal MainCompartmentName As String, ByVal I As Integer) As String

Name of a sub-compartment

Read-Only

SimaProServer.SubstanceCASnumber

Property SubstanceCASNumber(ByVal MainCompartmentName As String, ByVal I As Integer) As String

CAS number of a substance

Read-Only

Meant for listing the substances. Addressing with index.

Example

See FindSubstance

SimaProServer.Substance

Property Substance(ByVal MainCompartmentName As String, ByVal I As Long) As Substance

Return a substance object adressed by an index (see SubstanceCount)

Read-Only

SimaProServer.SubstanceCount

Property SubstanceCount(ByVal MainCompartmentName As String) As Integer

Number of substances

Read-Only

Meant for listing the Substances.

Example

List all substances

Parameters Description

MainCompartmentName Name of main compatment

I Index

Parameters Description

MainCompartmentName Main compartment (‘Air’, ‘Water’, etc)

I Index

Parameters Description

MainCompartmentName Main compartment (‘Air’, ‘Water’, etc)

I Index

Parameters Description

MainCompartmentName Main compartment (‘Air’, ‘Water’, etc)

43

Programming the SimaPro COM Interface

For I := 0 to SimaPro.SubstanceCount('Air') - 1 do print

SimaPro.SubstanceName('Air', I);

SimaProServer.SubstanceDefaultUnit

Property SubstanceDefaultUnit(ByVal MainCompartmentName As String, ByVal I As Integer) As String

Default unit of a substance

Read-Only

Meant for listing the substances. Addressing with index.

SimaProServer.SubstanceName

Property SubstanceName(ByVal MainCompartmentName As String, ByVal I As Integer) As String

Name of a substance

Read-Only

Meant for listing the substances. Addressing with index.

Example

List all substances

For I := 0 to SimaPro.SubstanceCount('Air') - 1 do

print SimaPro.SubstanceName('Air', I);

SimaProServer.Tree

Function Tree(ByVal ProjectName As String, ByVal ProcessType As TProcessType, ByVal ProductName As

String, ByVal MethodProjectName As String, ByVal MethodName As String, ByVal NWSetName As String)

As Boolean

Perform the tree function for a process or product stage

Parameters Description

MainCompartmentName Main compartment (‘Air’, ‘Water’, etc)

I Index

Parameters Description

MainCompartmentName Main compartment (‘Air’, ‘Water’, etc)

I Index

Parameters Description

ProjectName Name of project

ProcessType ProcessType (ptMaterial, ptEnergy, etc)

ProductName Name of product

MethodProjectName Name of project where methods is stored (often 'methods')

MethodName Name of method

NWSetName Name of normalisation weigting set

44

Programming the SimaPro COM Interface

Return value

Returns Boolean

SimaProServer.TreeCalcScore

Function TreeCalcScore(ByVal ResultType As TResultType, ByVal Param1 As String, ByVal Param2 As

String, ByVal Param3 As String) As Boolean

Calculates the node and flow scores of a tree

Member of SimaProServer

Return value

Returns Boolean

SimaProServer.TreeChildNodeCount

Property TreeChildNodeCount(ByVal NodeIndex As Integer) As Integer

Number of child nodes of a tree node

Member of SimaProServer

Read-Only

SimaProServer.TreeChildNodeIndex

Property TreeChildNodeIndex(ByVal NodeIndex As Integer, ByVal FlowIndex As Integer)

As Integer Index of a child node of a tree node

Member of SimaProServer
Read-Only

SimaProServer.TreeNodeCount

Property TreeNodeCount As Integer

Parameters Description

ResultType Param1 Param2 Param3

rtCharacterisation Impact Category - -

rtDamage Damage Category - -

rtNormalisation Damage Category or Impact

Category

- -

rtWeighting Damage Category or impact

Category

- -

rtSingleScore - - -

rtInventory MainCompartment Subcompartment SubstanceName

Parameters Description

NodeIndex Node index

Parameters Description

NodeIndex Node index

FlowIndex Flow index

45

Programming the SimaPro COM Interface

Number of nodes in the tree

Member of SimaProServer

Read-Only

SimaProServer.TreeProductName

Property TreeProductName(ByVal NodeIndex As Integer) As String

Product name of a tree node

Member of SimaProServer
Read-Only

SimaProServer.TreeResult

Function TreeResult(ByVal NodeResultType As TNodeResultType, ByVal NodeIndex As Integer) As

SimaProTreeResult Retrieve the data of a tree node

Member of SimaProServer

Return value

Returns SimaProTreeResult

SimaProServer.TreeTopNodeIndex

Property TreeTopNodeIndex As Integer

Index of the top node of the tree

Member of SimaProServer

Read-Only

SimaProServer.UnitCount

Property UnitCount(ByVal QuantityName As String) As Integer

Number of units per quantity

Member of SimaProServer

Read-Only

Example
Number of 'Mass' units

for I := 0 to Sp.unitCount('Mass') - 1 do print

Sp.UnitName('Mass', I);

Parameters Description

NodeIndex Node index

Parameters Description

NodeResultType nrProductAmount, nrIndicatorContribution, nrIndicatorTotal,

nrFlowIndicator

NodeIndex Nodeindex (refers to list of Nodes of network or tree)

Parameters Description

QuantityName Quantity

46

Programming the SimaPro COM Interface

SimaProServer.UnitDefault

Property UnitDefault(ByVal QuantityName As String) As String

Default unit of a quantity (factor = 1)

Member of SimaProServer

Read-Only

SimaProServer.UnitFactor

Property UnitFactor(ByVal QuantityName As String, ByVal I As Integer) As Double

Factor of a unit

Member of SimaProServer

Read-Only

SimaProServer.UnitMetric

Property UnitMetric(ByVal QuantityName As String, ByVal I As Integer) As Boolean

Indicates if a unit is metric

Member of SimaProServer
Read-Only

SimaProServer.UnitName

Property UnitName(ByVal QuantityName As String, ByVal I As Integer) As String

Name of a unit

Member of SimaProServer

Read-Only

Example

Number of 'Mass' units

for I := 0 to Sp.unitCount('Mass') - 1 do print

Sp.UnitName('Mass', I);

Parameters Description

QuantityName Quantity ('Mass', 'Volume' etc)

Parameters Description

QuantityName Quantity ('Mass', 'Volume' etc)

I Index

Parameters Description

QuantityName Quantity ('Mass', 'Volume' etc)

I Index

Parameters Description

QuantityName Quantity ('Mass', 'Volume' etc)

I Index

47

Programming the SimaPro COM Interface

SimaProServer.WasteTypeCount

Property WasteTypeCount As Integer

Number of waste-types

Member of SimaProServer
Read-Only

SimaProServer.WasteTypeName

Property WasteTypeName(ByVal I As Integer) As String

Name of a waste-type

Member of SimaProServer

Read-Only

5.1.23 SimaProTreeResult
Class SimaProTreeResult

Object containing tree flows resulting from the calculation of a process object.

SimaProTreeResult.Amount

Property Amount As Double

Amount of the product

SimaProTreeResult.ProductName

Property ProductName As String

Name of the product

SimaProTreeResult.UnitName

Property UnitName As String

Unit of the amount

Member of SimaProTreeResult

SimaProTreeResult.Valid

Property Valid As Boolean

Indicates if the node is part of the tree

5.1.24 StandardDeviation Property
Select one of the available subtopics below to see detailed help on StandardDeviation property

Parameters Description

I Index

Parameters Description

ParamLine Standard deviation of the input parameter

ProcessLine Standard deviation of amount

48

Programming the SimaPro COM Interface

5.1.25 SubCompartmentName Property
Select one of the available subtopics below to see detailed help on SubCompartmentName property

5.1.26 Substance
Class Substance

Represents a substance in SimaPro. Use to edit, find or use substances.

Substance.Cancel

Sub Cancel()

Cancel edit mode and returns to read mode

Substance.CASnumber

Property CASNumber As String

CAS number

Example

Substance.Casnumber := '45-32-45'

Substance.Comment

Property Comment As IStrings

Comment

Substance.DefaultUnit

Property DefaultUnit As String

Default unit, defines also the quantity

Substance.Edit

Sub Edit()

Set the object in edit mode

Substance.MainCompartment

Property MainCompartment As String

Main compartment (e.g. 'Airborne emission')

Read-Only

Substance.Mode

Property Mode As String

Mode of the object, can be: Read, New or Edit

Read-Only

Parameters Description

SimaProAnalyseResult

SimaProServer Name of a sub-compartment

49

Programming the SimaPro COM Interface

Substance.Name

Property Name As String

Name of the substance (e.g. 'Carbon dioxide')

Substance.Update

Sub Update()

Store the data of the object in the database and switch to read mode

Example

Create a new substance

SimaPro.CreateSubstance('Air', Substance)

Substance.Name := 'My new substance'

Substance.UnitName := 'kg';

Substance.Update; // save in database

5.1.27 UnitName Property
Select one of the available subtopics below to see detailed help on UnitName property

5.1.28 Update Method
Select one of the available subtopics below to see detailed help on Update method

5.2 License functions & properties
5.2.1 SimaProServer.ActivateAuto
Function ActivateAuto() As TLicenseStatus

Contacts the PRé activation server to perform an automated activation. The easiest way to activate if you

have a direct connection to internet.

Object Property description

ParamLine Name of the unit of amount

SimaProAnalyseResult Unit (e.g. kg, m3)

SimaProNetworkResult Unit (e.g. kg, m3)

SimaProServer Name of a unit

SimaProTreeResult Unit of the amount

Object Property description

Process Store the data of the object in the database and switch to

read mode

Substance Store the data of the object in the database and switch to

read mode

50

Programming the SimaPro COM Interface

5.2.2 SimaProServer.ActivateBrowser
Property ActivateBrowser As String

Returns the URL on which activation can be done manually.

Member of SimaProServer

try

{

textBlock1.Text += "BrowserActivation: " + SP1.ActivateBrowser + "\r\n";

}

catch (Exception u)

{

textBlock1.Text += "Exception BrowserActivation: " + u.Message + "\r\n";

}

5.2.3 SimaProServer.ActivateEmailAddress
Property ActivateEmailAddress As String

The email address to which you can send your activation request

Member of SimaProServer

Example
try

{

textBlock1.Text += "ActivateEmail: " + SP1.ActivateEmailAddress + "\r\n";

}

catch (Exception u)

{

textBlock1.Text += "Exception ActivateEmail: " + u.Message + "\r\n";

}

5.2.4 SimaProServer.ActivateEmailBody
Property ActivateEmailAddress As String

The email body to use when you can send your activation request by mail

Member of SimaProServer

5.2.5 SimaProServer.ActivateEmailSubject
Property ActivateEmailAddress As String

The email subject used to send your activation request by mail

Member of SimaProServer

5.2.6 SimaProServer.ActivateMachineID
Property ActivateMachineID As String

The MachineID on which you’ll want to activate your license (needed for web, and email activation)

Parameters Description

Return value Returns lsLicenseAlreadyActivated or result of

SimaProServer.LicenseStatus

51

Programming the SimaPro COM Interface

Member of SimaProServer

try

{

textBlock1.Text += "BrowserActivation: " + SP1. ActivateMachineID+ "\r\n";

}

catch (Exception u)

{

textBlock1.Text += "Exception ActivateMachineID: " + u.Message + "\r\n";

}

5.2.7 SimaProServer.ActivateLicense
Function ActivateLicense(ByVal ActivationCode As String) As TLicenseStatus

Checks to see if ActivationCode parameters contain correct code, and if so, will activate the license.

5.2.8 SimaProServer.DeactivateLicense
Function DeactivateLicense() As Licensestatus

Deactivates the license on the Pre server and on the machine.

5.2.9 SimaProServer.ExpirationDate (obsolete)
This function is replaced by SimaProServer.LicenseExpireDate

Property ExpirationDate As Date

5.2.10 SimaProServer.IsActivated (obsolete)
This function is replaced by SimaProServer.Licensestatus

Property IsActivated As TLicenseStatus

Returns the license status whether current license is activated or not

5.2.11 SimaProServer.IsRegistered (obsolete)
This function is replaced by SimaProServer.Licensestatus

Property IsRegistered As TLicenseStatus

Returns the license status, based on whether current license is activated or not

Parameters Description

ActivationCode The activationcode as a string

Return value lsActivated, lsWrongActivationCode, lsNotRegistered

Parameters Description

Return value lsDeactivated , lsNotRegistered,

Parameters Description

Return value lsNoLicense, lsLicenseExpired, lsNoLicenseForCom,

lsRegistered, lsNotRegistered

52

Programming the SimaPro COM Interface

5.2.12 SimaProServer.IsReleaseAllowed
Function ActivateLicense(ByVal Product as TSoftwareProduct, ReleaseDate as Date)

As Boolean Checks to see if the service contract was active at the requested date.

5.2.13 SimaProServer.IsSIngleUser
Property IsSIngleUser As Boolean

Returns False if a valid multiuser license is active or expired. Otherwise it returns True

5.2.14 SimaProServer.LicenseExpireDate
Function ActivateLicense(ByVal Product as TSoftwareProduct)

As Date Get the expiry date of license of requested product.

5.2.15 SimaProServer.LicenseType
Property LicenseType As String

Returns 'Indefinite' / 'Subscription' / 'Unknown'

5.2.16 SimaProServer.LicenseStatus
Function ActivateLicense(ByVal Product as TSoftwareProduct) As TLicenseSatatus

Get the current licence status of requested product.

5.2.17 SimaProServer.RegisterLicense
Function RegisterLicense (ByVal LicenseCode As string, ByVal RegistrationName As string) As

TLicenseStatus Registers the license.

Parameters Description

Product The requested product

ReleaseDate Releasedate of product

Return value True/ False

Parameters Description

Product The requested product

Return value Expiredate

Parameters Description

Product The requested product

Return value lsLicenseExpired/ lsActivatedWithService/

lsActivatedNoService/ lsDemoMode/ lsDemoExpired/

lsRegistered/ lsNoLicense

53

Programming the SimaPro COM Interface

5.2.18 SimaProServer.RegistrationCode
Property RegistrationCode As String

Returns a string with the first row of the registration code.

5.2.19 SimaProServer.RegistrationName
Property RegistrationName As String

Returns a string with the name used for the registration code.

5.2.20 SimaProServer.ServerVersion
Property ServerVersion As String

Returns: Textual presentation of the current SimaPro software version.

5.2.21 SimaProServer.ServiceEndDate
Function ServiceEndDate (ByVal Product as TSoftwareProduct) As Date

Get the expiration date of the service contract belonging to the license of requested product.

5.2.22 SimaProServer.SimaProVersion
Property SimaProVersion As String

Returns: 'Compact'/ 'Analyst'/ 'Developer'/ 'Faculty'/ 'Classroom'/ 'PhD'/ 'No license found'

5.2.23 SimaProServer.SupportInfo
Property SupportInfo As String

Returns a string with text which can be used as body of a support request mail.

Parameters Description

LicenseCode Licensecode as a string

RegistrationName Registration name as a string

Return value lsRegistered, lsRegistrationFileError, lsLicenseExpired,

lsNotRegistered

Parameters Description

Product The requested product

Return value Expiry date

54

Programming the SimaPro COM Interface

5.3 Enumerated types
5.3.1 TDistribution

Enum TDistribution

5.3.2 TLicenseStatus

Constant Value Description

dsUndefined 0 Distribution is not defined

dsLogNormal 1 Lognormal

dsNormal 2 Normal (Gaussian)

dsTriangle 3 Triangle

dsUniform 4 Uniform

Constant Value Description

lsRegistered 0 Registred, not activated

lsActivated 1 Activated

lsNoLicense 2 No license registered

lsLicenseExpired 3 Temporary license is currently expired

lsOnlySingleUserLicenseAllowed 4 Registration attempt failed; Multi-user licenses

can’t be used when installed as single user

lsOnlyMulitUserLicenseAllowed 5 Registration attempt failed; Single-user licenses

can’t be used when installed as multi user

lsActivationServerUnavailable 6 Activation attempt failed, activationserver

unavailable

lsActivationLimitReached 7 Activation attempt failed, no more activations

for this license

lsNotActivated 8 Activation status (obsolete)

lsNotRegistered 9 Registration status

lsBlackListed 10 Activation attempt failed, license is blacklisted

by Pre consultants

lsValidationConnectionError 11

lsInvalidActivationKey 12 Obsolete

lsLicenseAlreadyActivated 13 Attempt to enter activation key failed; Already

activated lsDeactivated

lsDeactivationLimitReached 15 Activation attempt failed, Too many

deactivations have taken place last weeks

lsNoLicenseForCom

lsRegistrationFileError 17 Failed to create licensefile for registrationcode

lsRegisteredAsDemo

55

Programming the SimaPro COM Interface

5.3.3 TNodeResultType
Enum TNodeResultType

Type of result from a network or tree node

5.3.4 TParameterType
Enum TParameterType

5.3.5 TProcessPart
Enum TProcessPart Parts of a process

lsUnknownStatus 19 If some unforeseen problems in the

licensesystem of Simapro uccurs, this value

might be returned

lsWrongActivationCode 20 Attempt to enter activation key failed;Invalid

activationkey lsActivatedWithService

or indefinite in servicecontract

period)

lsActivatedNoService 22 Simapro license is currently active, and outside

servicecontract period (indefinite

license)

lsDemoMode 23 Simapro is running without license with demo

limitations

lsDemoExpired 24

Constant Value Description

nrProductAmount 0 Amount of a product

nrIndicatorContribution 1 Contribution of a product to the selected

indicator

nrIndicatorTotal 2 Contribution of a product including all sub-

processes to the selected indicator

nrFlowIndicator 3 Contribution of a flow to the selected indicator

Constant Value Description

ptInputParameter 0 Parameter is a constant value optional with

distribution data

ptCalculatedParameter 1 Parameter is an expression

Constant Value Description

ppProducts 0 Products (outputs)

ppMaterialsFuels 1 Inputs from technosphere (other processes)

ppElectricityHeat 2 Inputs from technosphere (other processes)

ppAvoidedProducts 3 Avoided product

56

Programming the SimaPro COM Interface

5.3.6 TProcessStatus

Enum TProcessStatus

5.3.7 TProcessType

Enum TProcessType

ppWasteToTreatment 4 Waste

ppRawMaterials 5 Use of resources (raw materials)

ppAirborneEmissions 6 Emissions to air

ppWaterborneEmissions 7 Emissions to water

ppFinalWasteFlows 8 Emissions to waste

ppEmissionsToSoil 9 Emissions to soil

ppNonMaterialEmissions 10 Non material emissions

ppSocialIssues 11 Social issues

ppEconomicIssues 12 Economic issues

ppSpecificWaste 13 Outputs to specific waste

ppRemainingWaste 14 Remaining waste

ppSubAssembly 15 Subassembly (product stages only)

ppReferencedAssembly 16 Referenced assembly (product stages only)

ppAssembliesAndMaterials 17 Assemblies or materials (product stages only)

ppProcesses 18 Process (product stages only)

ppWasteScenarios 19 Waste scenario (product stages only)

ppDisposalScenarios 20 Disposal scenario (product stages only)

ppAdditionalLifeCycles 21 Additional life cycle (Life cycle product stage

only)

ppDisassemblies 22 Disassembly (product stages only)

ppReuses 23 Reuse (product stages only)

ppWasteOrDisposalScenario 24 Waste or disposal scenario (product stages

only)

Constant Value Description

stEmpty 0 No status

stTemporary 1 Temporary process

stDraft 2 Draft, work to be done

stToBeRevised 3 To be revised

stToBeReviewed 4 To be reviewed

Constant Value Description

ptMaterial 0 Material process

57

Programming the SimaPro COM Interface

5.3.8 TResultType

Enum TResultType

5.3.9 TSoftwareProduct

ptEnergy 1 Energy Process

ptTransport 2 Transport process

ptProcessing 3 Processing process

ptUse 4 Use process

ptWasteScenario 5 Waste scenario

ptWasteTreatment 6 Waste treatment

ptAssembly 7 Assembly product stage

ptLifeCycle 8 Life cycle product stage

ptDisposalScenario 9 Disposal scenario

ptDisassembly 10 Disassembly

ptReuse 11 Reuse

Constant Value Description

rtCharacterisation 0 Characterisation score

rtDamage 1 Damage score

rtNormalisation 2 Normalised score

rtWeighting 3 Weighted score

rtSingleScore 4 Single score

rtInventory 5 Inventory results (LCI)

Constant Value Description

spSimaPro 0 The SimaPro application

spCOM 1 The COM-interface of SimaPro

58

Programming the SimaPro COM Interface

6 Contact Us

Please contact us if you have questions about the COM interface or SimaPro in general.

• In SimaPro: Help > Contact SimaPro Support (recommended)

• SimaPro Help Center contact form: https://support.simapro.com/s/contactsupport

• E-mail: support@simapro.com

• Phone: +31 33 4504010

https://support.simapro.com/s/contactsupport
mailto:support@simapro.com

